Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)
\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)
\(\Leftrightarrow x\ge-\frac{5}{3}\)
Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
a) \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(\Leftrightarrow3x-9+5x-5-x-6=0\)
\(\Leftrightarrow7x=20\)
\(\Rightarrow x=\frac{20}{7}\)
b) \(\left|4x-2\right|=8\Leftrightarrow\orbr{\begin{cases}4x-2=8\\4x-2=-8\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
c) \(-3\left|6x+1\right|=-12\)
\(\Leftrightarrow\left|6x+1\right|=4\Leftrightarrow\orbr{\begin{cases}6x+1=4\\6x+1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=3\\6x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{6}\end{cases}}\)
Bài giải
a, \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(3x-9+5x-5-x-6=0\)
\(7x-20=0\)
\(7x=20\)
\(x=\frac{20}{7}\)
b, \(\left|4x-2\right|=8\)
\(4x-2=\pm8\)
\(\Rightarrow\orbr{\begin{cases}4x-2=-8\\4x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-6\\4x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy \(x\in\left\{-3\text{ ; }2\right\}\)
c, \(-3\left|6x+1\right|=-12\)
\(\left|6x+1\right|=4\)
\(6x+1=\pm4\)
\(\Rightarrow\orbr{\begin{cases}6x+1=-4\\6x+1=4\end{cases}}\Rightarrow\orbr{\begin{cases}6x=-5\\6x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{6}\\x=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{5}{6}\text{ ; }\frac{1}{2}\right\}\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
a: \(\dfrac{3x-7}{2}+\dfrac{x-1}{3}=-16\)
\(\Leftrightarrow3\left(3x-7\right)+2\left(x-1\right)=-96\)
\(\Leftrightarrow9x-21+2x-2=-96\)
=>11x=-73
hay x=-73/11
b: \(x-\dfrac{x-1}{3}=\dfrac{2x+1}{5}\)
=>15x-5(x-1)=3(2x+1)
=>15x-5x+5=6x+3
=>10x+5=6x+3
=>4x=-2
hay x=-1/2
c: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
=>14x-7-15x-6=21(x+13)
=>21x+273=-x-13
=>22x=-286
hay x=13
Đặt \(x^2-4x+5=t\ge1\)
\(\Rightarrow\dfrac{5}{t}-\left(t-5\right)-1=0\)
\(\Leftrightarrow-t^2+4t+5=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=5\end{matrix}\right.\)
\(\Rightarrow x^2-4x+5=5\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
We have \(\frac{1}{2}\left(4x-2\right)=5-\left(6-x\right)\)
\(\Leftrightarrow2x-1=x-1\)
\(\Leftrightarrow3x=0\)
\(\Leftrightarrow x=0\)
So ...
1/2(4x-2)=5-(6-x)
=>2x-1=5-6+x
=>2x-x=5-6+1
=>x=0
Vậy S = {0}
đúng 100% nhé, ko đúng thì ko phải hs lớp 8