Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)
\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)
\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)
Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).
Từ đây suy ra giá trị của \(x\).
ĐK: \(0\le x\le1\)
Đặt \(t=\sqrt{x}+\sqrt{1-x}\) ( \(t>0\) )
\(\Leftrightarrow t^2=x+1-x+2\sqrt{x\left(1-x\right)}\)
\(\Leftrightarrow t^2-1=2\sqrt{x-x^2}\)
\(\Leftrightarrow\frac{t^2-1}{2}=\sqrt{x-x^2}\)
Ta có \(pt\Leftrightarrow1+\frac{2}{3}\cdot\frac{t^2-1}{2}=t\)
\(\Leftrightarrow1+\frac{t^2-1}{3}-t=0\)
\(\Leftrightarrow t^2-1-3t+3=0\)
\(\Leftrightarrow t^2-3t+2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)
TH1: \(\sqrt{x}+\sqrt{1-x}=1\)
\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\)
\(\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)( thỏa (
TH2: \(\sqrt{x}+\sqrt{1-x}=2\)
\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=4\)
\(\Leftrightarrow\sqrt{x\left(1-x\right)}=\frac{3}{2}\)
\(\Leftrightarrow x\left(1-x\right)=\frac{9}{4}\)
\(\Leftrightarrow4x\left(1-x\right)=9\)
\(\Leftrightarrow4x^2-4x+9=0\)
\(\Leftrightarrow\left(2x+1\right)^2+8=0\)( vô lý )
Vậy \(x\in\left\{0;1\right\}\)
câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi
\(x^2-1+\sqrt{143}=\frac{1}{x^2-1}-\sqrt{143}\)(đk: \(x\ne1\))
Đặt \(x^2-1=a\left(a\ge-1,a\ne0\right)\)
Có \(a+\sqrt{143}=\frac{1}{a}-\sqrt{143}\)
<=> \(a-\frac{1}{a}+2\sqrt{143}=0\)
<=> \(\frac{a^2-1+2\sqrt{143}a}{a}=0\)
<=> \(a^2+2\sqrt{143}a+143=144\)
<=> \(\left(a+\sqrt{143}\right)^2=144\)
=> \(\left[{}\begin{matrix}a+\sqrt{143}=12\\a+\sqrt{143}=-12\left(ktm\right)\end{matrix}\right.\) <=> \(a=12-\sqrt{143}\)
<=> \(x^2-1=12+\sqrt{143}\)
Làm nốt nha :))