Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:
\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)
\(\Leftrightarrow-2=-2\) (đúng)
- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)
- Nếu \(0< x< 8\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)
\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)
Vậy nghiệm của pt đã cho là \(x\ge8\)
b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)
Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:
\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)
\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)
\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)
Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)
\(\text{Đ}K:\text{ }x\ge\frac{1}{2}\)
\(1\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=1\Leftrightarrow x+\left|x-1\right|=1\)
\(+,x\ge1\Rightarrow\left|x-1\right|=x-1\Rightarrow2x-1=1\Leftrightarrow x=1\left(tm\right)\)
\(+,x< 1\Rightarrow\left|x-1\right|=1-x\Rightarrow1=1\left(\text{đ}ung\right)\Rightarrow\frac{1}{2}\le\text{ }x< 1\)
\(Vaay:\frac{1}{2}\le x\le1\)
a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)
\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)
\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)
\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)
Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)
\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)
c)Áp dụng BĐT CAuchy-Schwarz ta có:
\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)\)
\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\)
câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi
1) \(\sqrt{3-x}=3x-5\)
\(\Leftrightarrow\left(\sqrt{3-x}\right)^2=\left(3x-5\right)^2\)
\(\Leftrightarrow3-x=9^2-30x+25\)
\(\Rightarrow x=\frac{11}{9};x=2\)
2) \(x-\sqrt{4x-3}\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2x-x\)
\(\Leftrightarrow-\sqrt{4-x}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Rightarrow x=1;x=7\)
4) \(\sqrt{x+1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow x=3;x=0\)
\(\Rightarrow x=3;x=0\)
5) \(\sqrt{x^2-1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2-1=x^2+2x+1\)
\(\Rightarrow x=-1\)
6) \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)
\(\Leftrightarrow x=3;x=4\)
\(\Rightarrow x=3;x=4\)
7) \(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
8) \(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow x-2\sqrt{x-1}-x=16-x\)
\(\Leftrightarrow-2\sqrt{x-1}=16-x\)
\(\Leftrightarrow\left(-2\sqrt{x-1}\right)^2=\left(16-x\right)^2\)
\(\Leftrightarrow4x-4=256-32x+x^2\)
\(\Leftrightarrow x=26;x=10\)
\(\Rightarrow x=26;x=10\)
9) \(\sqrt{5-x^2}=x-1\)
\(\Leftrightarrow\left(\sqrt{5-x^2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5-x^2=x^2-2x+1\)
\(\Leftrightarrow x=2;x=-1\)
\(\Rightarrow x=2;x=-1\)
10) \(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2-x\)
\(\Leftrightarrow-\sqrt{4x-3}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Leftrightarrow x=7;x=1\)
\(\Rightarrow x=1;x=7\)
Mk ko chắc