Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐK: \(x\ge\frac{3}{2}\)
pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)
\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)
\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)
\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)
2) ĐK: \(2\le x\le4\)
pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)
\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\) => bpt vô nghiệm
b/ ĐKXĐ: \(x>1\)
\(bpt\Leftrightarrow x-2< 2\Leftrightarrow x< 4\)
\(\Rightarrow1< x< 4\)
c/ \(\frac{x+2}{3}-2x-2>0\)
\(\Leftrightarrow\frac{x+2-6x-6}{3}>0\Leftrightarrow x+2-6x-6>0\Leftrightarrow x< -\frac{4}{5}\)
d/ \(bpt\Leftrightarrow\frac{3x+5}{2}-\frac{x+2}{3}-x-1\le0\)
\(\Leftrightarrow\frac{9x+15-2x-4-6x-6}{6}\le0\)
\(\Leftrightarrow x\le-5\)
a) ĐK : \(x\ge\frac{2}{3}\)\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2-2\sqrt{\left(3x-2\right)\left(x+7\right)}+x+7=1\)
\(\Leftrightarrow4x+5-1=2\sqrt{3x^2+19x-14}\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\)
\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\)
\(\Leftrightarrow x^2-11x+18=0\Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
b) ĐK \(x\ge-\frac{1}{5}\)\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\Leftrightarrow14x+7+2x+3-5x-1-2\sqrt{28x^2+42x+14x+21}=0\)
\(\Leftrightarrow11x+9=2\sqrt{28x^2+56x+21}\Leftrightarrow121x^2+81+198x=112x^2+224x+84\)
\(\Leftrightarrow9x^2-26x-3=0\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{1}{9}\left(loai\right)\end{matrix}\right.\)
c) \(\sqrt{x^2+2x+6}-\sqrt{x^2+x+2}=1\)
\(\Leftrightarrow x^2+2x+6=x^2+x+2+1+2\sqrt{x^2+x+2}\)
\(\Leftrightarrow x+3=2\sqrt{x^2+x+2}\)
\(\Leftrightarrow x^2+6x+9=4x^2+4x+8\)
\(\Leftrightarrow3x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\frac{1}{3}\left(tm\right)\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:
\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
c/ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
ĐKXĐ: ...
\(\Leftrightarrow5x+9=x+5+4\sqrt{x+1}\)
\(\Leftrightarrow x+1=\sqrt{x+1}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)