K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
\(\sin ^2(\frac{\pi}{6}-x)=\frac{1}{4}\)

\(\Rightarrow \left[\begin{matrix} \sin (\frac{\pi}{6}-x)=\frac{1}{2}\\ \sin (\frac{\pi}{6}-x)=\frac{-1}{2}\end{matrix}\right.\)

Nếu \(\sin (\frac{\pi}{6}-x)=\frac{1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{5\pi}{6}-2k\pi \end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2k\pi \\ x=2k\pi-\frac{2}{3}\pi \end{matrix}\right.\) với $k$ nguyên.

Nếu \(\sin (\frac{\pi}{6}-x)=\frac{-1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{-\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{7\pi}{6}-2k\pi \end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+2k\pi \\ x=(2k-1)\pi\end{matrix}\right.\) với $k$ nguyên.

Gộp cả 2TH trên lại ta suy ra \(x=n\pi \) hoặc \(x=n\pi+\frac{\pi}{3}\) với $n$ là số nguyên bất kỳ.

NV
16 tháng 7 2020

c/

\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
16 tháng 7 2020

a/

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)

b/

\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
28 tháng 6 2019

Do \(VT=sin\left(2x-\frac{\pi}{6}\right)\le1\)

\(sin\left(\frac{\pi}{6}-x\right)\ge-1\Rightarrow VT=sin\left(\frac{\pi}{6}-x\right)+2\ge-1+2=1\)

\(\Rightarrow VP\ge VT\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(\frac{\pi}{6}-x\right)=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\\frac{\pi}{6}-x=-\frac{\pi}{2}+l2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{2\pi}{3}+l2\pi\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)

5 tháng 6 2016

2(sin2xcos\(\frac{9\pi}{4}\) + sin\(\frac{9\pi}{4}\)cosx) + 7\(\sqrt{2}\)sinx + \(\sqrt{2}\)( sinx cos\(\frac{11\pi}{2}\)+sin\(\frac{11\pi}{2}\)cosx ) =4\(\sqrt{2}\)

\(\sqrt{2}\)sin2x + \(\sqrt{2}\)cosx +7\(\sqrt{2}\)sinx -\(\sqrt{2}\)cosx =4\(\sqrt{2}\)

2\(\sqrt{2}\)sinxcosx+7\(\sqrt{2}\)sinx - 4\(\sqrt{2}\) =0

PHẦN CÒN LẠI C TỰ LM NỐT NHÉ

Mình vội nên suy nghĩ có 5 phút nếu sai sót gì mong bạn thông cảm

 

16 tháng 7 2020

\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)

NV
16 tháng 7 2020

d/

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)

Xét (2)

\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)

\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)

NV
23 tháng 9 2020

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)

b.

\(\sqrt{2}sin\left(\frac{\pi}{4}-2x\right)+\sqrt{2}sin\left(\frac{\pi}{4}+x\right)=1\)

\(\Leftrightarrow cos2x-sin2x+sinx+cosx=1\)

\(\Leftrightarrow1-2sin^2x-2sinx.cosx+sinx+cosx=1\)

\(\Leftrightarrow-2sinx\left(sinx+cosx\right)+sinx+cosx=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      

\(\begin{array}{l}\sin \left( {2x - \frac{\pi }{6}} \right) =  - \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{6} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x =  - \frac{\pi }{6} + k2\pi \\2x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{12}} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

b)     \(\begin{array}{l}\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \cos \frac{\pi }{3}\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{{3x}}{2} + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\\frac{{3x}}{2} + \frac{\pi }{4} = \frac{{ - \pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k4\pi }}{3}\\x = \frac{{ - 7\pi }}{{18}} + \frac{{k4\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

c)       

\(\begin{array}{l}\sin 3x - \cos 5x = 0\\ \Leftrightarrow \sin 3x = \cos 5x\\ \Leftrightarrow \cos 5x = \cos \left( {\frac{\pi }{2} - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} - 3x + k2\pi \\5x =  - \left( {\frac{\pi }{2} - 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x =  - \frac{\pi }{4} + k\pi \end{array} \right.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

d)      

\(\begin{array}{l}{\cos ^2}x = \frac{1}{4}\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x =  - \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \cos \frac{\pi }{3}\\\cos x = \cos \frac{{2\pi }}{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\\\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\end{array} \right.\end{array}\)

e)      

\(\begin{array}{l}\sin x - \sqrt 3 \cos x = 0\\ \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{3}.\sin x - \sin \frac{\pi }{3}.\cos x = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin 0\\ \Leftrightarrow x - \frac{\pi }{3} = k\pi ;k \in Z\\ \Leftrightarrow x = \frac{\pi }{3} + k\pi ;k \in Z\end{array}\)

f)       

\(\begin{array}{l}\sin x + \cos x = 0\\ \Leftrightarrow \frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{4}.\sin x + \sin \frac{\pi }{4}.\cos x = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 0\\ \Leftrightarrow x + \frac{\pi }{4} = k\pi ;k \in Z\\ \Leftrightarrow x =  - \frac{\pi }{4} + k\pi ;k \in Z\end{array}\)