Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình bày cách làm nhé ! Ở 3 câu,mỗi số hạng ở vế trái là trị tuyệt đối nên ko âm
=> Vế trái ko âm và bằng 0 (theo đề) chỉ khi mỗi số hạng bằng 0.Từ đó tìm được x,y
\(\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4x}\right|+\left|1,5-\frac{11}{17}+\frac{23}{13y}\right|=0\)
Phân tích :
ta biết khi hai số đối nhau cộng lại sẽ có tổng bằng 0 , nhưng trong trường hợp trên thì sẽ không có 2 số đối nhau bởi vì cả hai phép tích đều có giá trị tuyệt đối
=> \(\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4x}\right|=\left|1,5-\frac{11}{17}+\frac{23}{13y}\right|=0\)
=>\(\frac{2}{3}-\frac{1}{2}+\frac{3}{4x}=\frac{3}{2}-\frac{11}{17}+\frac{23}{13y}=0\)
=> \(\frac{1}{6}+\frac{3}{4x}=\frac{29}{34}+\frac{23}{13y}=0\)
=> \(\left[{}\begin{matrix}\frac{1}{6}+\frac{3}{4x}=0\\\frac{29}{34}+\frac{23}{13y}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\frac{3}{4x}=0-\frac{1}{6}=-\frac{1}{6}\\\frac{23}{13y}=0-\frac{29}{34}=-\frac{29}{34}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}4x=3.6:\left(-1\right)=-18\\13y=23.34:\left(-29\right)=-\frac{782}{29}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-18:4=-\frac{9}{2}\\y=-\frac{782}{29}:13=-\frac{782}{377}\end{matrix}\right.\)
Vậy (x;y)∈{\(-\frac{9}{2};-\frac{782}{377}\)}
a)\(4x^2=9\)
\(< =>x^2=\frac{9}{4}\)
\(< =>x=\frac{-3}{2};\frac{3}{2}\)
a)\(4x^2=9\Rightarrow x^2=\frac{9}{4}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)
b)\(2x^2=6\Rightarrow x^2=3\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{3}\end{cases}}\)
c)\(x^2+3=12\Rightarrow x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
∆' = (-2)² - [-(m² + 3m)]
= 4 + m² + 3m
= m² + 3m + 9/4 + 7/4
= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R
Δ=(-4)^2-4(-m^2-3m)
=16+4m^2+12m
=4m^2+12m+16
Để phương trình có 2 nghiệm phân biệt thì
4m^2+12m+16>0
=>m^2+3m+4>0
=>m^2+3m+9/4+7/4>0
=>(m+3/2)^2+7/4>0(luôn đúng)
a) \(4x+12=0\)
\(4x=-12\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
b) \(5x-\dfrac{1}{6}=0\)
\(5x=\dfrac{1}{6}\\ x=\dfrac{1}{30}\)
Vậy \(x=\dfrac{1}{30}\) là nghiệm đa thức.
c) \(-6-2x=0\)
\(2x=-6\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
d) \(x^2+4x=0\)
\(x\left(x+4\right)=0\)
TH1: \(x=0\)
TH2: \(x+4=0\) hay \(x=-4\)
Vậy các nghiệm của đa thức là \(x=0,x=-4\).
e) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-4=0\), suy ra \(x^2=4\), do đó \(x=2\) hoặc \(x=-2\)
Vậy các nghiệm của đa thức là \(x=0,x=2,x=-2\)
f) \(x^5-27x^2=0\)
\(x^2\left(x^3-27\right)=0\)
Th1: \(x^2=0\) hay \(x=0\)
TH2: \(x^3-27=0\), suy ra \(x^3=27\), hay \(x=3\)
Vậy \(x=0,x=3\) là các nghiệm của đa thức.
\(\text{a)Đặt 4x+12=0}\)
\(\Rightarrow4x=0-12=-12\)
\(\Rightarrow x=\left(-12\right):4=-3\)
\(\text{Vậy đa thức 4x+12 có nghiệm là x=-3}\)
\(\text{b)Đặt 5x-}\dfrac{1}{6}=0\)
\(\Rightarrow5x=0+\dfrac{1}{6}=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:5=\dfrac{1}{30}\)
\(\text{Vậy đa thức 5x-}\dfrac{1}{6}\text{ có nghiệm là }x=\dfrac{1}{30}\)
\(\text{c)Đặt (-6)-2x=0}\)
\(\Rightarrow2x=\left(-6\right)-0=-6\)
\(\Rightarrow2x=\left(-6\right):2=-3\)
\(\text{Vậy đa thức (-6)-2x có nghiệm là x=-3}\)
\(\text{d)Đặt }x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+4=0\Rightarrow x=0-4=-4\end{matrix}\right.\)
\(\text{Vậy đa thức }x^2+4x\text{ có 2 nghiệm là }x=0;x=-4\)
\(\text{e)Đặt }x^3-4x=0\)
\(\Rightarrow x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\Rightarrow x^2=0+4=4\Rightarrow x=\pm2\end{matrix}\right.\)
\(\text{Vậy đa thức }x^3-4x\text{ có 3 nghiệm là }x=0;x=2;x=-2\)
\(\text{f)Đặt }x^5-27x^2=0\)
\(\Rightarrow x^2\left(x^3-27\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x^3-27=0\Rightarrow x^3=0+27=27\Rightarrow x=3\end{matrix}\right.\)
\(\text{Vậy đa thức }x^5-27x^2\text{ có 2 nghiệm là }x=0;x=3\)
ĐK \(x\ne0,x\ne-1\)
Ta có \(\frac{x^2-4+\frac{1}{x^2}}{x+\frac{1}{x}}+x^2+3+\frac{1}{x^2}=4\)
Đặt \(x+\frac{1}{x}=a\)=> \(x^2+\frac{1}{x^2}=a^2-2\)
=> \(\frac{a^2-6}{a}+a^2-3=0\)
<=> \(a^3+a^2-3a-6=0\)=> \(\left(a-2\right)\left(a^2+3a+3\right)=0\)
=> a=2
=> \(x+\frac{1}{x}=2\)=> \(x^2+1=2x\)=> x=1 (thỏa mãn ĐKXĐ)
Vậy \(x=1\)
\(ĐKXĐ:x\ne0\)
\(PT\Leftrightarrow\frac{x^7-x^6+4x^5-4x^4+4x^3+x^2+x}{x^3\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1+4x^2\left(x^2+1\right)}{x^2\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1}{x^2\left(x^2+1\right)}=0\)
\(\Leftrightarrow x^6+x^5-4x^3+x+1=0\)
\(\Leftrightarrow x^6-x^5+2x^5-2x^4+2x^4-2x^3-2x^3+2x^2-2x^2+2x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5+2x^4+2x^3-2x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
Vì \(x^4+3x^3+5x^2+3x+1\ne0\)nên
\(x-1=0\Leftrightarrow x=1\)
Vậy tập nghiệm của pt là \(S=\left\{1\right\}\)
\(\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x\right|+\left|1.5-\frac{11}{17}+\frac{23}{13}y\right|=0\)
Mà \(\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x\right|\ge0\) và \(\left|1.5-\frac{11}{17}+\frac{23}{13}y\right|\ge0\)
\(\Rightarrow\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x\right|+\left|1.5-\frac{11}{17}+\frac{23}{13}y\right|\ge0\)
Dấu "="\(\Leftrightarrow\)\(\left|\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x\right|=0\) hoặc \(\left|1.5-\frac{11}{17}+\frac{23}{13}y\right|=0\)
Đến đây dễ r
<=> 4x2-27x+23=0
<=> 4x(x-1)-23(x+1)=0
<=> (x+1) (4x-23)=0
<=> x+1=0 hoặc <=> 4x-23=0
<=> x=0-1 hoặc <=> 4x=0+23
<=> x=-1 hoặc <=> 4x=23
<=> x=23/4
Answer:
\(4x^2-27x+23=0\)
\(\Rightarrow4x^2-4x-23x+23=0\)
\(\Rightarrow4x\left(x-1\right)-23\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(4x-23\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\4x-23=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{23}{4}\end{cases}}}\)