Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{x^5\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)+\left(x+1\right)}{x^2-1}\)
\(=\dfrac{x^2\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2\left(x^2+x+1\right)\left(x^2-x+1\right)+1}{x-1}\)
Sửa đề :
\(5x^2+5y^2-8xy-2x-2y+2=0\)
\(\Leftrightarrow4x^2+x^2+4y^2+y^2-8xy-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2-8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(2x-2y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=0\\x-1=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}\Leftrightarrow x=y=1}}\)
Vậy....
b) \(x^2+6x+9=144\)
\(\Leftrightarrow\left(x+3\right)^2=12^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
b, Ta có : \(x^2+6x+9=144\)
=> \(\left(x+3\right)^2=12^2\)
=> \(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{9,-15\right\}\)
c, Ta có : \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)
=> \(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{-x}{2018}\)
=> \(\frac{2-x}{2016}+1=\frac{1-x}{2017}+1+\frac{-x}{2018}+1\)
=> \(\frac{2-x}{2016}+\frac{2016}{2016}=\frac{1-x}{2017}+\frac{2017}{2017}+\frac{-x}{2018}+\frac{2018}{2018}\)
=> \(\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
=> \(\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)
=> \(\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
=> \(2018-x=0\)
=> \(x=2018\)
Vậy phương trình có tập nghiệm là \(S=\left\{2018\right\}\)
Thay x = -2 vào phương trình, ta có:
\(4.\left(-2\right)^2-25+q^2+4q.\left(-2\right)=0\)
\(\Leftrightarrow q^2-8q-9=0\Leftrightarrow\left(q-9\right)\left(q+1\right)=0\Leftrightarrow\orbr{\begin{cases}q=-9\\q=1\end{cases}}\)
Đặt cột dọc ra chia :v
Sửa đề: \(\left(3x^3-2x^2+2x+1\right):\left(3x+1\right)\)
\(=\left(3x^3-3x^2+3x+x^2-x+1\right):\left(3x+1\right)\)
\(=\left[3x\left(x^2-x+1\right)+\left(x^2-x+1\right)\right]:\left(3x+1\right)\)
\(=\left[\left(x^2-x+1\right)\left(3x+1\right)\right]:\left(3x+1\right)\)
\(=x^2-x+1\)
bài của bạn là 2x à
vậy mà tưởng 2-x là mình làm được