K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Mk nghĩ đề là như này : \(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)

21 tháng 8 2019

xin lỗi minh ghi sai đề nha. Nhờ bạn vào trả lời giúp mình cái:https://hoc24.vn/hoi-dap/question/842302.html?auto=1

23 tháng 8 2019

fix lai chut...

...

Ta có : \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

\(\Leftrightarrow x^2-2x+4=4x+8\)

\(\Leftrightarrow x^2-6x-4=0\)

\(\Delta=6^2-4\cdot\left(-4\right)=52\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{52}}{2}=3+\sqrt{13}\\x=\frac{6-\sqrt{52}}{2}=3-\sqrt{13}\end{matrix}\right.\)

Vậy....

23 tháng 8 2019

ĐK: \(x\ge-2\)

\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)

\(\Leftrightarrow2x^2+4=3\sqrt{x^3+8}+6x\)

\(\Leftrightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x+4}=a\\\sqrt{x+2}=b\end{matrix}\right.\)( \(a,b\ge0\) )

Ta có : \(a^2-b^2=x^2-2x+4-x-2=x^2-3x+2\)

\(pt\Leftrightarrow2\left(a^2-b^2\right)=3ab\)

\(\Leftrightarrow2a^2-3ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\left(chon\right)\\2a=-b\left(loai\right)\end{matrix}\right.\)

Ta có \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

\(\Leftrightarrow x^2-4x+4=4x+8\)

\(\Leftrightarrow x^2-8x-4=0\)

\(\Delta=8^2-4\cdot\left(-4\right)=80\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8+\sqrt{80}}{2}\\x=\frac{8-\sqrt{80}}{2}\end{matrix}\right.\)( thỏa )

Vậy...

22 tháng 6 2016

\(\frac{\left(x+4\right)\left(x-2\right)}{x^2-2x+3}=\left(x+1\right)\frac{x+2-4}{\sqrt{x+2}+2}\)

\(\left(x-2\right)\left(\frac{x+4}{x^2-2x+3}-\frac{x+1}{\sqrt{x+2}+2}\right)=0\)

+ x=2

+ chiu kho lam cai con lai

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

NV
26 tháng 2 2021

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

12 tháng 3 2021

ĐKXĐ: \(-3\le x\le6\)

Trước hết ta chứng minh:

\(\sqrt{x+3}+\sqrt{6-x}\le3\sqrt{2}\)

Mặt khác điều này hiển nhiên do bất đẳng thức Bunyakovski: 

\(VT\le\sqrt{2\left[\left(x+3\right)+\left(6-x\right)\right]}=3\sqrt{2}\)

Đẳng thức xảy ra khi \(x+3=6-x\Leftrightarrow x=\dfrac{3}{2}\)

Mặt khác theo AM-GM: 

\(6\sqrt{2x+6}-2x-13=2\sqrt{9\left(2x+6\right)}-2x-13\le\left[9+\left(2x+6\right)\right]-2x-13=2\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Từ đây thu được \(VT\le VP.\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Vậy \(S=\left\{\dfrac{3}{2}\right\}\)

18 tháng 7 2017

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì

\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)

\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))

Hay pt vô nghiệm

18 tháng 7 2017

phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v