\(x^3-y^3-2y^2-3y-1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học

24 tháng 8 2017

Ta có:

\(x^3-y^3-y^2-3y-1=0\)

\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)

Dễ dàng thấy:

\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)

\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)

Làm tiếp nhé

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

NV
3 tháng 3 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)

\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)

NV
3 tháng 3 2020

c.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)

\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)

\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)

\(\Leftrightarrow5x^2+20x-385=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)

\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)

\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)

27 tháng 6 2021

\(\left(1\right)\Leftrightarrow\left(x+y\right)^2+\left(y^2+3y-4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=-\left(y-1\right)\left(y+4\right)\)

\(VT\left(2\right)\ge0\forall x,y\Rightarrow VP\left(2\right)\ge0\Rightarrow\left(y-1\right)\left(y+4\right)\le0\)

\(\Rightarrow\hept{\begin{cases}y-1\le0\\y+4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}y-1\ge0\\y+4\le0\end{cases}\Rightarrow}-4\le y\le1\)

\(\Rightarrow y\in\left\{-4;-3;-2;-1;0;1\right\}\)

- Thử lại :

\(+)y=-4:\left(2\right)\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

\(+)y=-3:\left(2\right)\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)

\(+)y=-2:\left(2\right)\Leftrightarrow\left(x-2\right)^2=6\)( vô nghiệm nguyên )

\(+)y=-1:\left(2\right)\Leftrightarrow\left(x-1\right)^2=6\)( vô nghiệm nguyên )

\(+)y=0:\left(2\right)\Leftrightarrow x^2=4\Leftrightarrow x=2;x=-2\)

\(+)y=1:\left(2\right)\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy các nghiệm của hpt là : \(\left(4;-4\right)\);\(\left(5;-3\right)\)\(\left(1;-3\right)\)\(\left(2;0\right)\);\(\left(-2;0\right)\);\(\left(-1;1\right)\)

27 tháng 6 2021

Coi (1) là phương trình bậc 2 ẩn x, y là tham số 

(1) có nghiệm <=> Δ' ≥ 0 <=> y2 - ( 2y2 + 3y - 4 ) ≥ 0

<=> -y2 - 3y + 4 ≥ 0 <=> -4 ≤ y ≤ 1

Vì y nguyên => y ∈ { -4 ; -3 ; -2 ; -1 ; 0 ; 1 }

+) Với y = -4 (1) trở thành x2 - 8x + 16 = 0 <=> ( x - 4 )2 = 0 <=> x = 4 (tm)

+) Với y = -3 (1) trở thành x2 - 6x + 5 = 0 <=> ( x - 1 )( x - 5 ) = 0 <=> x = 1 (tm) hoặc x = 5(tm)

+) Với y = -2 (1) trở thành x2 - 4x - 2 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên

+) Với y = -1 (1) trở thành x2 - 2x - 5 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên

+) Với y = 0 (1) trở thành x2 - 4 = 0 <=> x = ±2 (tm)

+) Với y = 1 (1) trở thành x2 + 2x + 1 = 0 <=> ( x + 1 )2 = 0 <=> x = -1(tm)

Vậy ( x ; y ) ∈ { ( 4 ; -4 ) , ( 1 ; -3 ) , ( 5 ; -3 ) , ( 2 ; 0 ) , ( -2 ; 0 ) , ( -1 ; 1 ) }

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

PT \(\Leftrightarrow 2x^2+x(3-5y)+(3y^2-2y-3)=0(*)\)

Coi đây là pt bậc $2$ ẩn $x$. Để pt có nghiệm nguyên thì:

\(\Delta=(3-5y)^2-8(3y^2-2y-3)=t^2\) (\(t\in\mathbb{N}\) )

\(\Leftrightarrow y^2-14y+33=t^2\)

\(\Leftrightarrow (y-7)^2-16=t^2\)

\(\Leftrightarrow 16=(y-7-t)(y-7+t)\)

Lập bảng xét TH (nhớ rằng $y-7-t$ và $y-7+t$ có cùng tính chẵn lẻ và \(y-7-t\leq y-7+t\) với mọi $t\in\mathbb{N}$

để giảm bớt TH cần phải xét)

Khi đó, ta dễ dàng tìm được: \(y\in\left\{2;3;11;12\right\}\)

Thay từng giá trị của $y$ ở trên vào PT $(*)$ ta tìm được $x$:

\(y=2\Rightarrow x=1\)

\(y=3\Rightarrow x=3\)

\(y=11\Rightarrow x=13\)

\(y=12\Rightarrow x=15\)

2 tháng 3 2019

Akai Haruma Nguyễn Việt Lâm

9 tháng 9 2018

\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)

4 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

Do x,y nguyên

\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số 

\(\Rightarrow y=...\)

\(\Rightarrow x=...\)