Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(4x-5y-6xy-7=0\)
\(\Leftrightarrow12x-15y-18xy-21=0\)
\(\Leftrightarrow\left(12x-18xy\right)-15y-21=0\)
\(\Leftrightarrow6x.\left(2-3y\right)+5.\left(2-3y\right)-31=0\)
\(\Leftrightarrow\left(2-3y\right)\left(6x+5\right)=31\)
Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}2-3y\inℤ\\6x+5\inℤ\end{cases}}\)
Nên \(2-3y,6x+5\) là cặp ước của \(31\).
Ta có bảng sau :
\(2-3y\) | \(-1\) | \(1\) | \(-31\) | \(31\) |
\(y\) | \(1\) | \(\frac{1}{3}\) | \(11\) | \(-\frac{29}{3}\) |
\(6x+5\) | \(-31\) | \(31\) | \(-1\) | \(1\) |
\(x\) | \(-6\) | \(\frac{13}{3}\) | \(-1\) | \(-\frac{2}{3}\) |
Đánh giá | Chọn | Loại | Chọn | Loại |
Vậy \(\left(x,y\right)\in\left\{\left(-6,1\right);\left(-1,11\right)\right\}\) thỏa mãn đề.
1. \(x\left(y-4\right)=35-5\left(y-4\right)\) với y= 4 không phải nghiệm y khác 4
\(x=\frac{35}{y-4}-1\)
y=4+35/n
x=n-1
\(\hept{\begin{cases}n=\left\{-7,-5,-1,1,5,7\right\}\\y=\left\{-1,-3,-31,39,11,9\right\}\\x=n-1=\left\{-8,-6,-2,0,4,6\right\}\end{cases}}\)
2.x^2+x+6=y^2
4x^2+4x+1=4y^2-23
(2x+1)^2=4y^2-23
=>4y^2-23=t^2
(2y)^2-t^2=23
=>\(\hept{\begin{cases}y=+-6\\t=+-11\end{cases}\Rightarrow\hept{\begin{cases}2x+1=11\\2x+1=-11\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=-6\end{cases}}}\)
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
\(4x+5=0\)
\(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Vậy....
\(6x+7=0\)
\(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\frac{-7}{6}\)
Vậy....
Ta xét phương trình \(4x-5y-6xy+7=0\Leftrightarrow2x\left(2-3y\right)=5y-7\)
\(\Leftrightarrow2x=\frac{5y-7}{2-3y}\Leftrightarrow x=\frac{5y-7}{4-6y}\)
Để x nguyên thì \(\frac{5y-7}{4-6y}\)nguyên hay \(5y-7⋮4-6y\)
\(\Leftrightarrow6\left(5y-7\right)⋮4-6y\Leftrightarrow30y-42⋮4-6y\)
\(\Leftrightarrow-22-5\left(4-6y\right)⋮4-6y\)
Mà \(-5\left(4-6y\right)⋮4-6y\)nên \(-22⋮4-6y\)hay \(4-6y\inƯ\left(22\right)=\left\{\pm1;\pm2;\pm11;\pm22\right\}\)
Mà 4 - 6y chẵn nên \(4-6y\in\left\{\pm2;\pm22\right\}\)
Lập bảng:
Vậy phương trình có 2 nghiệm \(\left(x,y\right)\in\left\{\left(1;1\right);\left(-1;-3\right)\right\}\)