K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Yêu cầu của đề bài là gì bạn?

8 tháng 1 2019

Akai Haruma tìm x,y,z nguyên

4 tháng 10 2016

Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)

Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)

\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)

\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)

Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\)\(\left(\sqrt{2y-2}-2\right)^2\ge0\)\(\left(\sqrt{4z-3}-3\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)

Vậy (x;y;z) = (1;3;3) 

4 tháng 10 2016

1:3:3

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

30 tháng 4

Dùng định lý kẹp nhé

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

có x2 >= 0

<=> x+ 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)

Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x+ 3x2 + 3x + 1

<=> x = 0

Thay vào biểu thức được y = -3

Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)

30 tháng 4

Cái phần "

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

" bị sai

đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3

thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x =  -1 => y = -1

Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)