Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT \(\Leftrightarrow 2x^2+x(3-5y)+(3y^2-2y-3)=0(*)\)
Coi đây là pt bậc $2$ ẩn $x$. Để pt có nghiệm nguyên thì:
\(\Delta=(3-5y)^2-8(3y^2-2y-3)=t^2\) (\(t\in\mathbb{N}\) )
\(\Leftrightarrow y^2-14y+33=t^2\)
\(\Leftrightarrow (y-7)^2-16=t^2\)
\(\Leftrightarrow 16=(y-7-t)(y-7+t)\)
Lập bảng xét TH (nhớ rằng $y-7-t$ và $y-7+t$ có cùng tính chẵn lẻ và \(y-7-t\leq y-7+t\) với mọi $t\in\mathbb{N}$
để giảm bớt TH cần phải xét)
Khi đó, ta dễ dàng tìm được: \(y\in\left\{2;3;11;12\right\}\)
Thay từng giá trị của $y$ ở trên vào PT $(*)$ ta tìm được $x$:
\(y=2\Rightarrow x=1\)
\(y=3\Rightarrow x=3\)
\(y=11\Rightarrow x=13\)
\(y=12\Rightarrow x=15\)
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
6x2 - 26x - 6y2 + 39y - 5xy - 5 = 0
<=> (6x2 - 9xy) + (4xy - 6y2) + ( - 26x + 39y) = 5
<=> (2x - 3y)(3x + 2y - 13) = 5
Tới đây tự làm nốt nhé
Đặt \(\hept{\begin{cases}\sqrt{4x^2+3xy-7y^2}=a\\\sqrt{3x^2-2xy-y^2}=b\end{cases}}\)
\(\Rightarrow a^2-b^2=x^2+5xy-6y^2\)
Từ đó ta có pt (1)
\(\Leftrightarrow a-b+4\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+4a+4b\right)=0\)
\(\Leftrightarrow\)a = b
\(\Leftrightarrow x^2+5xy-6y^2=0\)
\(\Leftrightarrow x^2-2xy+y^2+7xy-7y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+6y\right)=0\)
Tới đây thì bài toán đơn giản rồi bạn làm tiếp nhé
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
theo em chắc có thể là như thế này:
xy(6+8+6+3)=2
=>xy23=2
=>xy=2:23
em lm đc đến đây cj có thể lm nốt ko
Pt này ko giải được (có vô số nghiệm)
Nếu đề là pt nghiệm nguyên thì còn có khả năng giải :)
\(2x^2+7y^2+3x-6y=5xy-7\)
\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)
Thấy ngay \(VT>0\)
=> Pt vô nghiệm
Sure ?
\(2x^2+7y^2+3x-6y=5xy-7\)
<=> \(16x^2+56y^2+24x-48y=40xy-56\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)
Mà \(31y^2-18y+47>0\)với mọi y
=> (1) vô nghiệm