\(\left(x+3\sqrt{x}\right)\left(x+9\sqrt{x}+18\right)=168\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

ĐKXĐ: x\(\ge0\)

Ta có: 

\(\left(x+3\sqrt{x}\right)\left(x+9\sqrt{x}+18\right)=168\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x+3}\right)\left(\sqrt{x}+6\right)=168\)

\(\Leftrightarrow\left(x+6\sqrt{x}\right)\left(x+6\sqrt{x}+9\right)=168\)

Đặt \(x+6\sqrt{x}=a\)\(\left(a\ge o\right)\). Khi đó:

\(a\left(a+9\right)=168\Leftrightarrow a^2+9a-168=0\)

Bn tu giải tiếp nhé

30 tháng 4 2017

\(pt\Leftrightarrow\left(9+4\sqrt{5}\right)^{\dfrac{x}{2}}+\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=18\)

Thấy rằng \(9-4\sqrt{5}\) là nghịch đảo của \(9+4\sqrt{5}\)

Do vậy \(\left(9+4\sqrt{5}\right)^{\dfrac{x}{2}}\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=1\)

Đặt \(\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=t\) ta có pt:

\(t+\dfrac{1}{t}=18\Rightarrow t^2-18t+1=0\Rightarrow t=9\pm4\sqrt{5}\)

Vì vậy \(t=9\pm4\sqrt{5}=\left(9-4\sqrt{5}\right)^{\pm1}=\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}\)

\(\Rightarrow\dfrac{x}{2}=\pm1\Rightarrow x=\pm2\)

30 tháng 4 2017

\(\sqrt{\left(9+4\sqrt{5}\right)^x}+\sqrt{\left(9-4\sqrt{5}\right)^x}=18\)

<=>\(\sqrt{\left(5+2.2\sqrt{5}+4\right)^x}+\sqrt{\left(5-2.2.\sqrt{5}+4\right)^x}=18\)

<=>\(\sqrt{\left(\sqrt{5}+2\right)^{2x}}+\sqrt{\left(\sqrt{5}-2\right)^{2x}}=18\)

<=>\(\left(\sqrt{5}+2\right)^x+\left(\sqrt{5}-2\right)^x=18\)

Nhận xét:

x>2 thì VT>18=VP

x<2 thì VT<18=VP

x=2 thì VT=VP

Vậy S={2}

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

24 tháng 9 2018

Xửa đề:

\(\left(x+1\right)\left(x+4\right)+3\left(x+4\right)\sqrt{\frac{x+1}{x+4}}-18=0\)

Xet \(x+4>0\)

\(\Rightarrow\left(x+1\right)\left(x+4\right)+3\sqrt{\left(x+1\right)\left(x+4\right)}-18=0\)

Đặt \(\sqrt{\left(x+1\right)\left(x+3\right)}=a\)

\(\Rightarrow a^2+3a-18=0\)

Trường hợp \(x+4< 0\)

Làm tương tự

24 tháng 12 2018

NX: x = 0 là 1 nghiệm của pt

Nếu \(x\ne0\)

\(ĐKXĐ:x\ge3\)

Ta có : \(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)

      \(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}-\sqrt{x\left(x-3\right)}=0\)(1)

Vì mỗi ngoặc trong căn đều dương nên ta tách ra được

 \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}\right)=0\)

        \(\Leftrightarrow\sqrt{x}=0\left(h\right)\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)

*Nếu \(\sqrt{x}=0\)

\(\Rightarrow x=0\)(loại vì ko thỏa mãn ĐKXĐ)

*Nếu \(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt{x+2}+\sqrt{x-2}\)

Dễ thấy VT < VP

=> pt vô nghiệm

Vậy pt có 1 nghiệm duy nhất x = 0

24 tháng 12 2018

Bổ sung chỗ ĐKXĐ nhé !
\(ĐKXĐ:\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}\)

Còn phần tiếp theo làm tương tự !

21 tháng 3 2016

<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)

b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)

<=>\(2\sqrt{2}^x+2=6\)

<=>x=2