\(\left(x+1\right).\sqrt{2x^2-2x}=2x^2-3x-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

TK: https://hoc24.vn/cau-hoi/giai-phuong-trinh-x1sqrt2x2-2x-2x2-3x-2.261337627197

27 tháng 9 2021

Nguyễn Hoàng Minh                                                         , bn dạy mk cách  tra câu hỏi đi bn? Cám ơn bn nhìu

19 tháng 11 2015

Đặt 2x^2+2x+1=b;căn(x^2+1)=a>1(do x^2 >=0) 
>>b-2a^2=2x-1>>2b-4a^2=4x-2 
>>2b-4a^2+1=4x-1 
>>(2b-4a^2+1)a=b 
>>b(2a-1)=a(4a^2-1)=a(2a-1)(2a+1) 
>>b=a(2a+1)( Loại 2a-1=0 vì a>1) 
>>b-2a^2 =a>>b-2a^2 =a 
>>2x-1=căn(x^2+1)>>4x^2-4x+1=x^2+1 với x>=1/2 
>>3x^2-4x=0>>x=4/3(Loại x=0 vì x>1/2) 
Vậy x=4/3

19 tháng 11 2015

Trung  ĐÂU CƠ HỘI CỦA CẬU KÌA    ~~ TÓM LẤY NHANH  VÀ LẸ ĐI

NV
5 tháng 3 2020

a/ \(\Rightarrow2x^2-3x-11=x^2-1\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Thay 2 nghiệm vào cả 2 căn thức thấy đều xác định

Vậy nghiệm của pt là ...

b/ \(\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-5=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-6=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\\x=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
5 tháng 3 2020

c/

\(\Leftrightarrow x^2+4x+4=3x^2-5x+14\)

\(\Leftrightarrow2x^2-9x+10=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\left\{{}\begin{matrix}-x-9\ge0\\\left(x-1\right)\left(2x-3\right)=\left(-x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\2x^2-5x+3=x^2+18x+81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\x^2-23x-78=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=26\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....