Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt[3]{x}}=a\\\frac{1}{\sqrt[3]{y}}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=9\\\left(a+b\right)\left(a+1\right)\left(b+1\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\\left(a+b\right)\left(ab+a+b+1\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\ab\left(a+b\right)+\left(a+b\right)^2+\left(a+b\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\3ab\left(a+b\right)+3\left(a+b\right)^2+3\left(a+b\right)=54\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)^3+3\left(a+b\right)^2+3\left(a+b\right)=63\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2+3\left(a+b\right)+1=64\)
\(\Leftrightarrow\left(a+b+1\right)^3=4^3\)
\(\Leftrightarrow a+b+1=4\Rightarrow a+b=3\)
\(\Rightarrow3\left(ab+3+1\right)=18\Rightarrow ab=2\)
Theo Viet đảo; a và b là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(2;1\right)\Rightarrow\left(x;y\right)=\left(1;\frac{1}{8}\right);\left(\frac{1}{8};1\right)\)
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
Đk: x, y\(\ne\) -1
Xét x, y bằng 0 => hpt vô nghiệm
Đặt \(\frac{x}{y+1}=a,\frac{y}{x+1}=b\)
=> \(ab=\frac{xy}{\left(y+1\right)\left(x+1\right)}=\frac{xy}{xy+x+y+1}=\frac{xy}{xy+2xy}=\frac{xy}{3xy}=\frac{1}{3}\)
<=> \(a=\frac{1}{3b}\)
Có \(a^2+b^2=\frac{10}{9}\)<=> \(\left(\frac{1}{3b}\right)^2+b^2=\frac{10}{9}\)
<=> \(9+81b^4=90b^{^2}\) <=> \(9b^4-10b^2+1=0\)
<=> \(\left(b^2-1\right)\left(9b^2-1\right)=0\) <=> \(\left(b-1\right)\left(b+1\right)\left(3b-1\right)\left(3b+1\right)=0\) <=> \(\left[{}\begin{matrix}b=1\\b=-1\\b=\frac{1}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}a=\frac{1}{3}\\a=-\frac{1}{3}\\a=1\\a=-1\end{matrix}\right.\)
Tại \(\left(a,b\right)=\left(\frac{1}{3},1\right)\) => \(\left(x;y\right)=\left(1;2\right)\)
Tại \(\left(a,b\right)=\left(-\frac{1}{3},-1\right)\) => \(\left(x;y\right)\in\varnothing\)
Tại \(\left(a,b\right)=\left(1,\frac{1}{3}\right)\)=> \(\left(x;y\right)=\left(2;1\right)\)
Tại \(\left(a,b\right)=\left(-1,-\frac{1}{3}\right)\) =>\(\left(x,y\right)\in\varnothing\)
Vậy hpt có 2 tập nghiệm duy nhất (1,2) , (2,1)