Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+1}=t>0\)
\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)
\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)
\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))
\(\Leftrightarrow x^2+1=4x^2\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
a/ ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)
Đặt \(\sqrt{x^2+x+1}=t>0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Điều kiện:`x>=2`
Ta có:
`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`
`=8/(\sqrt{x+6}+sqrt{x-2})`
`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`
`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`
`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`
`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`
`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`
`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`
Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`
`=>sqrt{x+6}-1>=2sqrt2-1>0`
`<=>sqrt{x-2}=1`
`<=>x=3(tm)`
Vậy `S={3}`
\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Đặt \(\sqrt{x^2+1}=y\ge1\) pt trở thành \(\left(4x-1\right)y=2y^2-2x\)
\(4xy-y=2y^2-2x\Leftrightarrow2y^2-2x-4xy+y=0\)\(\Leftrightarrow y\left(2y+1\right)-2x\left(2y+1\right)=0\Leftrightarrow\left(2y+1\right)\left(y-2x\right)=0\Leftrightarrow y=2x\)(vì y=-1/2(loại))
\(\Leftrightarrow\sqrt{x^2+1}=2x\Leftrightarrow x=\sqrt{\frac{1}{3}}\)
\(\hept{\begin{cases}\sqrt{x^2+1}=a\\2x^2+2x+1=b\end{cases}}\)
\(\Rightarrow2\left(b-2a^2\right)+1=4x-1\)
\(\Rightarrow\left(2b-4a^2+1\right)a=b\)
\(\Leftrightarrow\left(2a-1\right)\left(b-2a^2-a\right)=0\)
Làm nôt