Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
giải pt
\(|4x-1|\)\(\sqrt{x^2+1}\)=2\(x^2\) -2x+2
\(\sqrt{\frac{1}{x+3}}\)+\(\sqrt{\frac{5}{x+4}}\) =4
a,\(\Leftrightarrow\left(4x-1\right)^2\left(x^2+1\right)=4\left(x^2-x+1\right)^2\)
\(\Leftrightarrow\left(16x^2-8x+1\right)\left(x^2+1\right)=4\left(x^4+x^2+1-2x^3+2x^2-2x\right)\)
\(\Leftrightarrow16x^4+17x^2-8x^3-8x+1=4x^4+12x^2+4-8x^3-8x\)
\(\Leftrightarrow12x^4+5x^2-3=0\left(1\right)\)
Dat \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow12t^2+5t-3=0\)
\(\Delta=25-4.12.\left(-3\right)=169>0\)
Suy ra PT co hai nghiem phan biet
\(t_1=\frac{1}{3};t_2=-\frac{3}{4}\)
\(x=\frac{1}{\sqrt{3}}\)
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
Em làm như này chị kiểm tra giúp em với nhá
Xét x=0 không là nghiệm của phương trình
\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
\(\Leftrightarrow\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)
Đặt \(a=\frac{1}{x^2}>0\)
Khi đó \(\frac{1}{\sqrt{1+a}}+\frac{a}{2}=2\)
\(\Leftrightarrow2+a\sqrt{1+a}=4\sqrt{1+a}\)
\(\Leftrightarrow4\left(\sqrt{1+a}-2\right)-\left(a\sqrt{1+a}-6\right)=0\)
\(\Leftrightarrow4\cdot\frac{1+a-4}{\sqrt{1+a}+2}-\frac{a^2+a^3-36}{a\sqrt{1+a}+6}=0\)
\(\Leftrightarrow\frac{4\left(a-3\right)}{\sqrt{1+a}+2}-\frac{\left(a-3\right)\left(a^2+4a+12\right)}{a\sqrt{1+a}+6}=0\)
\(\Leftrightarrow\left(a-3\right)\left[\frac{4}{\sqrt{1+a}+2}-\frac{a^2+4a+12}{a\sqrt{1+a}+6}\right]=0\)
Cái to to trong hình như còn có nghiệm \(x=2+2\sqrt{2}\) nữa ạ mà em tịt rùi em nghĩ chắc ghép liên hợp nghiệm vô tỉ ^-^