\(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}\) + \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

Điều kiện \(\hept{\begin{cases}2+x\ge0\\2-x\ge0\end{cases}}\Leftrightarrow-2\le x\le2\)

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\left(a\ge0\right)\\\sqrt{2-x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2+b^2=4}\)thì

\(1PT\Leftrightarrow\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}b^2-a^2b+ab^2=2\sqrt{2}-2b+2a-\sqrt{2}ab\)

\(\Leftrightarrow2\sqrt{2}-a^2b+ab^2+2b-2a+\sqrt{2}ab=0\)

\(\Leftrightarrow\sqrt{2}\left(2+ab\right)+ab\left(b-a\right)+2\left(b-a\right)=0\)

\(\Leftrightarrow\sqrt{2}\left(2+ab\right)+\left(b-a\right)\left(2+ab\right)=0\)

\(\Leftrightarrow\left(2+ab\right)\left(\sqrt{2}+b-a\right)=0\)

\(\Leftrightarrow a-b=\sqrt{2}\)(vì 2 + ab > 0)

\(\Leftrightarrow\sqrt{2+x}-\sqrt{2-x}=\sqrt{2}\)

\(\Leftrightarrow4-2\sqrt{4-x^2}=2\)

\(\Leftrightarrow\sqrt{4-x^2}=1\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{3}\left(l\right)\end{cases}}\)

19 tháng 11 2016

kết quả đúng 

12 tháng 8 2019

\(\sqrt{\frac{-6}{1+x}}=5\)

\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)

\(\Leftrightarrow\frac{-6}{1+x}=25\)

\(\Leftrightarrow x+1=\frac{-6}{25}\)

\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)

12 tháng 8 2019

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)

\(\Leftrightarrow\sqrt{x-49}=2\)

\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)

8 tháng 7 2018

1.

Xét riêng 2 căn lớn đầu tiên

Bình phương, thu gọn được căn(12-8 căn 2)

Giờ kết hợp kết quả này với căn lớn còn lại

Tiếp tục bình phương, thu gọn là xong

NV
12 tháng 7 2020

d/

Bình phương 2 vế pt đã cho:

\(x^2-\frac{1}{4x}=x^2+x-\frac{1}{4x}-2x\sqrt{x-\frac{1}{4x}}\)

\(\Leftrightarrow x=2x\sqrt{x-\frac{1}{4x}}\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\2\sqrt{x-\frac{1}{4x}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x-\frac{1}{4x}\right)=1\)

\(\Leftrightarrow4x^2-x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{17}}{8}\\x=\frac{1-\sqrt{17}}{8}\end{matrix}\right.\)

Do quá trình biến đổi là không tương đương và ban đầu chưa tìm điều kiện xác định nên cần thế 2 nghiệm vào pt ban đầu để thử.

Ta thấy chỉ có nghiệm \(x=\frac{1+\sqrt{17}}{8}\) thỏa mãn

Vậy pt có nghiệm duy nhất \(x=\frac{1+\sqrt{17}}{8}\)

NV
12 tháng 7 2020

c/ Chắc đề là \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

ĐKXĐ: \(0\le x\le1\)

\(\Leftrightarrow2\sqrt{x+x^2}+2\sqrt{x-x^2}=2x+2\)

\(\Leftrightarrow\left(x+x^2-2\sqrt{x+x^2}+1\right)+\left(x-x^2-2\sqrt{x+x^2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+x^2}-1\right)^2+\left(\sqrt{x-x^2}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+x^2}-1=0\\\sqrt{x-x^2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-1=0\\x^2-x+1=0\end{matrix}\right.\)

Phương trình đã cho vô nghiệm