K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022

\(x=126\)

2 tháng 4 2022

x/60 + x/45 + 1,5 = 32/5

3+ 4+ 270 = 1152

7+ 270 = 1152

7= 1152 − 270

7= 882

x = 882/7

x = 126

27 tháng 1 2018

<=>\(\dfrac{\left(3x-0,4\right)15}{30}+\dfrac{\left(1,5-2x\right)10}{30}=\dfrac{\left(x+0,5\right)6}{30}\)

=>\(\left(3x-0,4\right)15+\left(1,5-2x\right)10=\left(x+0,5\right)6\)

<=>\(45x-6+15-20x=6x+3\)

<=>\(45x-20x-6x=6+3-15\)

<=>\(19x=-6\)

<=>\(x=\dfrac{-6}{19}\)

22 tháng 1 2018

ĐKXĐ

x≠3 ; x≠-3

22 tháng 1 2018

ĐKXĐ x≠3 ; x≠-3

\(\dfrac{2x-1}{x+3}=\dfrac{2x+1}{x-3}\)

=> (2x-1)(x-3)=(2x+1)(x+3)

⇔2x2-6x-x+3=2x2+6x+x+3

⇔2x2-2x2-7x-6x=3-3

⇔ -13x=0

⇔x=0 (tm)

vậy phương trình trên có tập no S={0}

3 tháng 5 2017

ĐKXĐ: x\(\ne2\), \(x\ne1\)

\(\dfrac{2x-5}{x-2}-\dfrac{3x-5}{x-1}=-1\)

<=> \(\dfrac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}-\dfrac{\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\dfrac{-1.\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

=> 2x2-2x-5x+5-3x2+6x+5x-10= -x2+2x-2+x

<=> 2x2-2x-5x+5-3x2+6x+5x-10+x2-2x+2-x=0

<=> x-3=0

<=> x=3 (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{3\right\}\)

23 tháng 4 2017

Pt trên có MSC là \(\left(x-1\right)\left(x^2+x+1\right)\)

Quy đồng mẫu số :

\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)

( ĐKXĐ \(x\ne1\))

\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{x^3-1}-\dfrac{3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+x+1+7x-10-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\) \(\dfrac{x^2+5x-6}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(KTMĐK\right)\\x=-6\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{-6\right\}\)

23 tháng 4 2017

ĐKXĐ: \(x\ne1\); \(x\ne-1\)

\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Rightarrow x^2+x+1+7x-10-3x+3=0\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow x-1=0\) ; \(x+6=0\)

+) \(x-1=0\)

\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)

+) \(x+6=0\)

\(\Leftrightarrow x=-6\) (Thỏa mãn ĐKXĐ)

Tập nghiệm: \(S=\left\{-6\right\}\)

a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)

\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)

\(\Leftrightarrow\left|x\right|-6=0\)

=>x=6 hoặc x=-6

b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)

Trường hợp 1: x>-2 và x<>2

Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)

=>7x=6

hay x=6/7(nhận)

TRường hợp 2: x<-2

Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)

=>-3x=-14

hay x=14/3(loại)

10 tháng 8 2018

\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\) ( ĐK : \(x\ne-2\) )

\(\Leftrightarrow\dfrac{12}{x^3+2^3}=1+\dfrac{1}{x+2}\)

\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)

\(\Leftrightarrow x^3+8+x^2-2x+4=12\)

\(\Leftrightarrow x^3+x^2-2x=0\)

\(\Leftrightarrow x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-2\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;1\right\}\)

10 tháng 8 2018

Thank you ! <3 !! :))

a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)

\(\Leftrightarrow15x-9x+6=45-10x+25\)

\(\Leftrightarrow15x-9x+10x=45+25-6\)

\(\Leftrightarrow16x=64\)

\(\Leftrightarrow x=4\)

b) \(x^2-9+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)

\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)

\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)

12 tháng 4 2018

a) 15x - 3(3x - 2) = 45 - 5(2x - 5)

\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25

\(\Leftrightarrow\) 6x + 10x = 70 - 6

\(\Leftrightarrow\) 16x = 64

\(\Leftrightarrow\) x = 4

Vậy.......................

b) x2 - 9 + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0

\(\Leftrightarrow\) (x - 3)(x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)

Vậy........................

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)

\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4

\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0

\(\Leftrightarrow\) x2 - 6x = 0

\(\Leftrightarrow\) x(x - 6) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)

Vậy...............

\(\Leftrightarrow\left(\dfrac{5}{x}+1\right)+\left(\dfrac{4}{x+1}+1\right)=\left(\dfrac{3}{x+2}+1\right)+\left(\dfrac{2}{x+3}+1\right)\)

=>x+5=0

hay x=-5

a: \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow x^2+30x+25=x^2+25x\)

=>5x=-25

hay x=-5(loại)

b: \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>2x+7=10

hay x=3/2