Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{a^2}{b+c}\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(c^2+a^2\right)}}+\frac{c^2}{\sqrt{2\left(c^2+a^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\\x+y+z=\sqrt{2019}\end{matrix}\right.\) \(\Rightarrow VT\ge\frac{1}{\sqrt{8}}\left(\frac{y^2+z^2-x^2}{x}+\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)\)
\(VT\ge\frac{1}{\sqrt{8}}\left(\frac{\left(y+z\right)^2}{2x}+\frac{\left(x+z\right)^2}{2y}+\frac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)
\(VT\ge\frac{1}{\sqrt{8}}\left[\frac{\left(2x+2y+2z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)\right]=\frac{x+y+z}{\sqrt{8}}=\sqrt{\frac{2019}{8}}\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=\) nhiêu đó
Sửa đề cho bạn luôn nhé!
\(\text{Ta có:}\)
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\text{Nhân cả hai vế của đẳng thức trên với}\) \(a^2+b^2+c^2\ne0\) \((do\) \(a,b,c\ne0\)),\(\text{ ta được:}\)
\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\) \(\left(1\right)\)
\(\text{Khi đó, ta khai triển vế phải của}\) \(\left(1\right)\) \(\text{thì} \) \(\left(1\right)\) \(\text{trở thành:}\)
\(VP=x^2+\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+y^2+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}+z^2\)
\(\text{So sánh vế trái của đẳng thức}\) \(\left(1\right)\), \(\text{ta dễ dàng nhận thấy cả hai vế có cùng đa thức}\) \(x^2+y^2+z^2\) \(\text{nên ta có thể viết lại }\) \(\left(1\right)\) \(\text{như sau:}\)
\(\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}=0\)
\(\Leftrightarrow\) \(\left(\dfrac{b^2x^2}{a^2}+\dfrac{c^2x^2}{a^2}\right)+\left(\dfrac{c^2y^2}{b^2}+\dfrac{a^2y^2}{b^2}\right)+\left(\dfrac{a^2z^2}{c^2}+\dfrac{b^2z^2}{c^2}\right)=0\)
\(\Leftrightarrow\) \(\dfrac{x^2}{a^2}\left(b^2+c^2\right)+\dfrac{y^2}{b^2}\left(c^2+a^2\right)+\dfrac{z^2}{c^2}\left(a^2+b^2\right)=0\) \(\left(2\right)\)
\(\text{Mặt khác, ta cũng có }\) \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\) \(a^2+b^2\ne0;\) \(b^2+c^2\ne0\) và \(c^2+a^2\ne0\) \(\left(3\right)\)
\(Từ\) \(\left(2\right)\) \(và\) \(\left(3\right)\),\(\text{ ta dễ dàng suy ra được }\) \(x=y=z=0\)
\(Vậy \) \(x^{2019}+y^{2019}+z^{2019}=0\) \((đpcm)\)
Ta có: \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)
\(c^2+2019=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)
\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)
\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)
\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)
Vậy...
easy
\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
đến đây ghép rồi dùng cô si
bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017