Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:6ax^2+4ax—9x—6=0
«=»2ax(3x+2)—3(3x+2)=0
«=»(3x+2)(2ax—3)=0
các bục sau tu giai
ta có : 6ax2+4ax-9x-6=0
\(\Leftrightarrow\)2ax(3x+2)-3(3x+2)=0
\(\Leftrightarrow\)(3x+2)(2ax-3)=0
xét 3x+2=0\(\Rightarrow\)x=\(\frac{-2}{3}\)
thay x vừa tìm được vào ta tính được a=\(\frac{-13}{3}\)
ax(4x2 - 1) - 3(4x2 - 1) = 0
(4x2 - 1) (ax - 3) = 0
4x2 - 1 = 0 => x = + - 1/2
ax - 3 = 0 => a = 3/x
a,thay k=0 vào PT ta có
\(9x^2-25=0\)
\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)
\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)
b,thay x=1 vào PT ta có
\(9-25-k^2-2k=0\)
\(\Leftrightarrow k^2+2k+16=0\)
\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)
Vậy ko có giá tri k thỏa mãn ĐK bài toán
`Answer:`
`a)` Thay `k=0` vào phương trình được:
`9x^2-25=0`
`<=>(3x-5)(3x+5)=0`
`<=>3x+5=0` hoặc `3x-5=0`
`<=>x=-5/3` hoặc `x=5/3`
`b)` Thay `x=-1` vào phương trình được:
`9-25-k^2+2k=0`
`<=>-k^2+2k-16=0`
`<=>-(k^2-2k+1)-15=0`
`<=>-(k-1)^2-15=0`
Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`
Vậy phương trình vô nghiệm.
a. Với k = 0
\(pt\Leftrightarrow9x^2-25=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b. Có: x = -1 là nghiệm của pt
=> \(9-25-k^2+2k=0\)
\(\Leftrightarrow-k^2+2k-16=0\)
\(\Leftrightarrow-\left(k^2-2k+1\right)-15=0\)
\(\Leftrightarrow\left(k-1\right)^2=-15\) (vô lí)
Vậy không có gt nào của k thỏa mãn pt có nghiệm x= -1
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
6ax2+4ax-9x-6 = 0
<=> ( 6ax2+4ax ) - ( 9x+6 ) = 0
<=> 2ax(3x+2) - 3(3x+2) = 0
<=> ( 2ax-3 )( 3x+2 ) = 0
<=> \(\left[{}\begin{matrix}2ax-3=0\\3x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2ax=3\\3x=-2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2a}\\x=\frac{-2}{3}\end{matrix}\right.\)