\(6ax^2+4ax-9x-6=0\) ( a là tham số)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

6ax2+4ax-9x-6 = 0

<=> ( 6ax2+4ax ) - ( 9x+6 ) = 0

<=> 2ax(3x+2) - 3(3x+2) = 0

<=> ( 2ax-3 )( 3x+2 ) = 0

<=> \(\left[{}\begin{matrix}2ax-3=0\\3x+2=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2ax=3\\3x=-2\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2a}\\x=\frac{-2}{3}\end{matrix}\right.\)

18 tháng 3 2017

Ta co:6ax^2+4ax—9x—6=0

«=»2ax(3x+2)—3(3x+2)=0

«=»(3x+2)(2ax—3)=0

các bục sau tu giai

18 tháng 3 2017

ta có : 6ax2+4ax-9x-6=0

    \(\Leftrightarrow\)2ax(3x+2)-3(3x+2)=0

     \(\Leftrightarrow\)(3x+2)(2ax-3)=0

xét 3x+2=0\(\Rightarrow\)x=\(\frac{-2}{3}\)

thay x vừa tìm được vào ta tính được a=\(\frac{-13}{3}\)

NV
17 tháng 4 2019

a/

\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)

\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)

b/

\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

c/

\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)

\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)

Ta có \(VT=\left(y-1\right)^2+2\ge2\)

\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

d/

\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)

Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)

\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

12 tháng 4 2019

\(4x+5=0\)

\(\Leftrightarrow4x=-5\)

\(\Leftrightarrow x=\frac{-5}{4}\)

Vậy....

12 tháng 4 2019

\(6x+7=0\)

\(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\frac{-7}{6}\)

Vậy....

27 tháng 5 2020

a) \(x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy : \(S=\left\{2;-3\right\}\)

27 tháng 5 2020

a) PT <=> \(\left(x^2-2x\right)+\left(3x-6\right)=0\)

<=> \(x\left(x-2\right)+3\left(x-2\right)=0\)

<=> \(\left(x-2\right)\left(x+3\right)=0\)

<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

KL: ...

b) \(PT< =>\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\)

<=> \(\left(x+\frac{1}{2}\right)^2=\frac{-15}{4}\)

<=> x = \(\varnothing\)

c) PT <=> \(\left(t^2-6t\right)+\left(12t-72\right)=0\)

<=> \(t\left(t-6\right)+12\left(t-6\right)=0\)

<=> \(\left(t+12\right)\left(t-6\right)=0\)

<=> \(\left[{}\begin{matrix}t=-12\\t=6\end{matrix}\right.\)

d) PT <=> \(\left(x^2-x\right)-\left(8x-8\right)=0\)

<=> \(x\left(x-1\right)-8\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x-8\right)=0\)

<=> \(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

e) PT <=> \(\left(x^2-9x+\frac{81}{4}\right)+\frac{23}{4}\)

<=> \(\left(x-\frac{9}{2}\right)^2=\frac{-23}{4}\)

<=> x = \(\varnothing\)

12 tháng 7 2017

b) \(\left(x^2-5x+7\right)-\left(9x-2\right)\left(x-3\right)=1\)

\(\Leftrightarrow x^2-5x+7-\left(9x^2-27x-2x+6\right)=1\)

\(\Leftrightarrow x^2-5x+7-9x^2+27x+2x-6=1\)

\(\Leftrightarrow-8x^2+24x=0\)

\(\Leftrightarrow x=3;x=0\)