K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Đặt \(\sqrt{2x+3}=t\ge0\Rightarrow2x=t^2-3\)

\(pt\Leftrightarrow\left(t^2-3\right)^2+12-4t^2+t=1\)

\(\Leftrightarrow t^4-10t^2+t+20=0\)

\(\Leftrightarrow\left(t^2-t-4\right)\left(t^2+t-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}t=\frac{1+\sqrt{17}}{2}\\t=\frac{-1+\sqrt{21}}{2}\end{cases}}\) \(\left(t\ge0\right)\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3+\sqrt{17}}{4}\\x=\frac{5-\sqrt{21}}{4}\end{cases}}\)

18 tháng 12 2016

củm ơn Thắng Nguyễn hị,,,

12 tháng 6 2017

đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết

26 tháng 6 2017

Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy

9 tháng 7 2018

truoc cai can trong can thu 2 la 4 dung ko?

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

23 tháng 9 2021

ĐK: `{(2x^2+8x+6>=0),(x^2-1>=0),(2x+2>=0):} <=> {(x=-1),(x>=1):}`

`\sqrt(2x^2+8x+6)+\sqrt(x^2-1)=2x+2`

`<=>(2x^2+8x+6)+(x^2-1)+2\sqrt((2x^2+8x+6)(x^2-1))=(2x+2)^2`

`<=>2(x+3)(x+1)+(x-1)(x+2)+2\sqrt((x+1)^2 (x+3)(x-1))=4(x+1)^2`

`<=> (x+1)[2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0`

`<=> [(x=-1\ (TM)),([2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0\ (1)):}`

(1) `<=> x-1=2\sqrt((x+3)(x-1))`

`<=>x^2-2x+1=4(x+3)(x-1)`

`<=>x=1\ `(TM)

Vậy `S={\pm 1}`.

23 tháng 9 2021

\(ĐK:x\le-3;x\ge-1\)

\(PT\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\left(x+3\right)+\left(x-1\right)+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\\ \Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\\ \Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{25}{7}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)

Vậy \(S=\left\{-1;1\right\}\)

17 tháng 9 2015

Ta có

\(\sqrt{-x^2+2x+2}=\sqrt{-x^2+2x-1+3}=\sqrt{-\left(x-1\right)^2+3}\le\sqrt{3}\)

\(\sqrt{-x^2-6x-8}=\sqrt{-x^2-6x-9+1}=\sqrt{-\left(x+3\right)^2+1}\le1\)

\(\Rightarrow\sqrt{-x^2+2x+2}+\sqrt{-x^2-6x-8}\le1+\sqrt{3}\)

Dấu "=" xảy ra khi x-1=0 và x+3=0 nên x=1  và x=-3(VL). Phương trình vô nghiệm