K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

\(2x^2-x-1=0\)

\(2x^2-2x+x-1=0\)

\(2x\left(x-1\right)+\left(x-1\right)=0\)

\(\left(2x+1\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=1\end{cases}}\)

27 tháng 2 2018

Mk ms lớp 8, sai thì thôi nhé !!! 

2x2-x-1=0

<=> 2x2-2x+x-1=0

<=> 2x(x-1)+(x-1)=0

<=> (x-1)(2x+1)=0

<=> x-1=0<=>x=1

hoặc 2x+1=0<=> x=-1/2

Vậy phương trình trên có tập nghiệm S={1,-1/2}

2 tháng 6 2021

ĐK: `x<=-1 ; x>= 1`

`\sqrt(x^2-1)+\sqrt(x^2-2x+1)=0`

`<=> \sqrt((x-1)(x+1)) + \sqrt((x-1)^2)=0`

`<=> \sqrt(x-1) (\sqrt(x+1) + \sqrt(x-1))=0`

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}+\sqrt{x-1}=0\left(VN\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)

Vậy `S={1}`.

2 tháng 6 2021

ĐKXĐ : \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

\(\sqrt{x^2-1}+\sqrt{x^2-2x+1}=0\)\(\)

\(\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\left(x-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=1\end{matrix}\right.\)\(\)

\(\Leftrightarrow x=1\)

Vậy S = {1}

 

2 tháng 11 2021

ĐKXĐ: \(x\ge\dfrac{1}{4}\)

\(pt\Leftrightarrow\sqrt{2x+1}=2\sqrt{x}-1\)

\(\Leftrightarrow2x+1=4x+1-4\sqrt{x}\)

\(\Leftrightarrow2x=4\sqrt{x}\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

2 tháng 11 2021

cám ơn bn nha^^

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

18 tháng 4 2022

lớp 9=))???

18 tháng 4 2022

hong giải thì bín :v

12 tháng 4 2016

Đặt x-1=t (a)  x^2-2x+2=v (b)

x^4=(v+2t)^2

(v+2t)^2+v*t=0   (*)\(\Rightarrow\)  v^2+6vt+4t^2=0\(\Rightarrow\)    (v/t)^2+6v/t+4=0   \(\Rightarrow\frac{v}{t}=-1;-2\)

Thay vào (*) tìm ra t hoặc v sau đó thay vào (a) và (b) là đươc ...

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

9 tháng 7 2021

a) \(2x^2+20x+52=0\Rightarrow x^2+10x+26=0\Rightarrow\left(x+5\right)^2+1=0\)

\(\Rightarrow\) vô nghiệm

b) ĐK: \(x\ne1;-1\)

\(\dfrac{2x-19}{5x^2-5}-\dfrac{17}{x-1}=\dfrac{8}{1-x}\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{17}{x-1}+\dfrac{8}{x-1}=0\)

\(\Rightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}-\dfrac{9}{x-1}=0\Rightarrow\dfrac{2x-19-45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow-43x-64=0\Rightarrow x=-\dfrac{64}{43}\)

9 tháng 7 2021

a)  Ta có: \(\Delta'=100-104=-4< 0\)

Vậy phương trình vô nghiệm.

b) ĐKXĐ: \(x\ne1;x\ne-1\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x^2-1\right)}=\dfrac{17}{x-1}-\dfrac{8}{x-1}\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{9}{x-1}\)

\(\Leftrightarrow\dfrac{2x-19}{5\left(x-1\right)\left(x+1\right)}=\dfrac{45\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow2x-19=45x+45\)

\(\Leftrightarrow43x=-64\)

\(\Leftrightarrow x=-\dfrac{64}{43}\)(TM)

Vậy phương trình có nghiệm là: \(x=-\dfrac{64}{43}\)