Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
a/ ĐKXĐ: \(0\le x\le4\)
\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)
Đặt \(\sqrt{-x^2+4x}=a\ge0\)
\(-a^2.a-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)
b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)
Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)
\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)
\(a^3+10-14=2a\)
\(\Leftrightarrow a^3-2a-4=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)
d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)
Đặt \(\sqrt[3]{3x^2+x+4}=a\)
\(2a^3+a-18=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)
e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)
Đặt \(\sqrt{x^2+5x+2}=a\ge0\)
\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)
Bài cuối xấu quá, chắc nhầm số liệu
1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)
\(t^3+2=2t-2\)
\(\Leftrightarrow t^3-2t+4=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)
\(\Rightarrow t=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)
\(\Leftrightarrow x^2+5x-2=-8\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)
\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)
a/
\(\Leftrightarrow4x^2-12x+9=\left(3x-2\right)^2\)
\(\Leftrightarrow5x^2-5=0\Rightarrow x=\pm1\)
b/
\(\Leftrightarrow25x^2-10x+1=\left(x+6\right)^2\)
\(\Leftrightarrow24x^2-22x-35=0\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=-\frac{5}{6}\end{matrix}\right.\)
c/
\(\Leftrightarrow16x^2-8x+1=\left(x-3\right)^2\)
\(\Leftrightarrow15x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-\frac{2}{3}\end{matrix}\right.\)
d/ \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(2x-3\right)^2\)
\(\Leftrightarrow21x^2+22x-8=0\Rightarrow\left[{}\begin{matrix}x=\frac{2}{7}\\x=-\frac{4}{3}\end{matrix}\right.\)
e/
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=x-2\\3x-4=2-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=2\\4x=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{2}\end{matrix}\right.\)
f/
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)
g/
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=2x^2-x-2\\x^2-2x=-2x^2+x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2-3x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\frac{3\pm\sqrt{33}}{6}\\\end{matrix}\right.\)
a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)
\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)
pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)
suy ra tìm đc x
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
\(pt\Leftrightarrow2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x+1\right)\left(x+1\right)^2}=\left(x+1\right)\left(5x^2-8x+8\right)\)\(\Leftrightarrow2\left(x+1\right)\sqrt{x}+\left(x+1\right)\sqrt{3\left(2x+1\right)}-\left(x+1\right)\left(5x^2-8x+8\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\circledast\end{matrix}\right.\)
Giải (*)\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\)
\(\Leftrightarrow2\sqrt{x}-2+\sqrt{3\left(2x+1\right)}-3=5x^2-8x+3\)
\(\Leftrightarrow\frac{4x-4}{2\sqrt{x}+2}+\frac{6x-6}{\sqrt{3\left(2x+1\right)}+3}=\left(x-1\right)\left(5x-3\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3\right)=0\)
x=1
bạn giải nốt cái còn lại nhá