\(16x^3-68x^2+92x-9=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

đề đâu hay quá vậy

27 tháng 12 2016

đề thi học kì trường thpt phùng hưng 2016-2017 câu 4

11 tháng 4 2018

ta có : \(16x^4-8x^2+1=0\)

\(\Leftrightarrow\left(4x^2\right)^2-2\cdot4x^2\cdot1+1=0\)

\(\Leftrightarrow\left(4x^2-1\right)^2=0\)

\(\Leftrightarrow4x^2-1=0\)

\(\Leftrightarrow4x^2=1\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

vậy....................................

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

17 tháng 8 2018

x>=1

\(\Leftrightarrow16x-13\sqrt{x-1}-9\sqrt{x+1}=0\)

\(\Leftrightarrow13\left(x-1-\sqrt{x-1}+\dfrac{1}{4}\right)+3\left(x+1-3\sqrt{x+1}+\dfrac{9}{4}\right)=0\)

\(\Leftrightarrow13\left(\sqrt{x-1}-\dfrac{1}{2}\right)^2+3\left(\sqrt{x+1}-\dfrac{3}{2}\right)^2=0\)

\(\left\{{}\begin{matrix}\sqrt{x-1}=\dfrac{1}{2}\\\sqrt{x+1}=\dfrac{3}{2}\end{matrix}\right.\)

x=5/4(tm)

9 tháng 9 2018

Mysterious Person Akai Haruma Nguyễn Thanh Hằng Mashiro Shiina

15 tháng 8 2017

cách giải hay nè:  =  
 =  
 =  
Đặt  = 
=>  = 
=> = .ta có hệ:
 
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói

15 tháng 8 2017

phần sau cậu làm giống cô là đc 

28 tháng 10 2018

Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có  nghiệm cuả phương trình để giải

10 tháng 8 2020

pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)

<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)

<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)

<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)

Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP

=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)

Mà \(\left(y-2\right)^2\)là 1 SCP 

=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)

Đến đây bạn xét từng trường hợp là ra rùi !!!!!!

2 tháng 10 2016

3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)

\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)

Dấu "=" xảy ra khi a = b = 2

Vậy Min P = 17 <=> a = b = 2

NV
15 tháng 4 2019

a/ \(0\le x\le2019^2\)

Đặt \(\sqrt{x}=t\ge0\Rightarrow t^2-2019+\sqrt{2019-t}=0\)

Đặt \(\sqrt{2019-t}=a\Rightarrow2019=a^2+t\) ta được:

\(t^2-\left(a^2+t\right)+a=0\)

\(\Leftrightarrow t^2-a^2-\left(t-a\right)=0\)

\(\Leftrightarrow\left(t-a\right)\left(t+a\right)-\left(t-a\right)=0\)

\(\Leftrightarrow\left(t-a\right)\left(t+a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=t\\a=1-t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2019-t}=t\\\sqrt{2019-t}=1-t\left(t\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t^2+t-2019=0\\t^2-t-2018=0\end{matrix}\right.\) \(\Rightarrow t=...\Rightarrow x=t^2=...\)