Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\sqrt{2x-1}-4x+2=0\)0
\(\Leftrightarrow x\sqrt{2x-1}-2\left(2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(x-2\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=0\\x-2\sqrt{2x-1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\sqrt{2x-1}\left(1\right)\end{cases}}\)
+) giải phương trình (1) ta có
\(x=2\sqrt{2x-1}\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4-2\sqrt{3}\\x=4+2\sqrt{3}\end{cases}}\)
Vậy phương trình đã cho có 3 nghiệm là \(x=\frac{1}{2};x=4+2\sqrt{3};x=4-2\sqrt{3}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow t^2=2x-1\Rightarrow x=\frac{t^2+1}{2}\)
Vậy pt đã cho \(\Leftrightarrow\frac{t^2+1}{2}\cdot t=2t^2\\ \Leftrightarrow t^3+t-4t^2=0\Rightarrow t\left(t^2-4t+1\right)=0\)
\(t=0\Rightarrow x=\frac{1}{2}\left(tm\right)\)
\(t^2-4t+1=0\Rightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
\(t=2-\sqrt{3}\Rightarrow2x-1=7-4\sqrt{3}\Rightarrow2x=8-4\sqrt{3}\\ \Rightarrow x=4-2\sqrt{3}\)
\(t=2+\sqrt{3}\Rightarrow2x-1=7+4\sqrt{3}\Rightarrow2x=8+4\sqrt{3}\\ \Rightarrow x=4+2\sqrt{3}\)
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\y\left(m-2\right)=2-mx\end{cases}}\)
Với m = 2 thì hệ trở thành
\(\hept{\begin{cases}8x+3y=3\\2-2x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=\frac{-5}{3}\end{cases}}\)
Với \(m\ne2\)thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}=3\left(1\right)\\y=\frac{2-mx}{\left(m-2\right)}\left(2\right)\end{cases}}\)
Từ (1) ta có
\(\left(2m^3-7m^2+3m\right)x=-3m\)
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m=0\end{cases}}\Leftrightarrow m=0\)
Thì phương trình có vô số nghiệm (x,y) thõa y = - 1; x tùy ý
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=3\end{cases}}\)
Thì hệ pt vô nghiệm
Với \(\hept{\begin{cases}2m^3-7m^2+3m\ne0\\-3m\ne0\end{cases}}\Leftrightarrow m\ne0;0,5;3\)
Thì hệ có nghiệm là
\(\hept{\begin{cases}x=\frac{3-3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}}{2m^2}\\y=\frac{2-mx}{\left(m-2\right)}\end{cases}}\)
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
Với m = 2 thì e giải nhé
Với m khác 2 thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{m-2}=3\left(1\right)\\y=\frac{2-mx}{m-2}\left(2\right)\end{cases}}\)
Xét (1) quy đồng rồi chuyển cái có x sang 1 vế phần còn lại sang 1 vế. Rồi biện luận nhé
\(\left(x^2+2x\right)^2-2x^2-4x=4\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)=4\)
Đặt \(x^2+2x=t\)
pt <=> \(t^2-2t=4\)
\(\Leftrightarrow t^2-2t-4=0\)
...
\(\left(x^2+2x\right)^2-2x^2-4x=4\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2\right)=4\)
Đặt \(x^2+2x=a\)
\(\Rightarrow pt\Leftrightarrow a^2-2a=4\Leftrightarrow a^2-2a-4=0\)
\(\cdot\Delta=\left(-2\right)^2-4.\left(-4\right)=20,\sqrt{\Delta}=\sqrt{20}\)
Vậy pt ẩn phụ có 2 nghiệm phân biệt
\(a_1=\frac{2+\sqrt{20}}{2}=\sqrt{5}+1\);\(a_2=\frac{2-\sqrt{20}}{2}=1-\sqrt{5}\)
Thay vào \(x^2+2x=a\),dùng delta giải.