\(x\left(\sqrt{2x+1}-\sqrt{2x+17}\right)^2=16\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

NV
27 tháng 10 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-5x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)-\frac{x-3}{1+\sqrt{x-2}}+\frac{x-3}{1+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1-\frac{1}{1+\sqrt{x-2}}+\frac{1}{1+\sqrt{4-x}}\right)=0\)

\(\Leftrightarrow x=3\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)

Ta có \(-3\le x\le1\Rightarrow\sqrt{1-x}+1\ge1\Rightarrow VT\ge3\)

\(\left\{{}\begin{matrix}\sqrt{x+3}\le2\\\sqrt{x}\le1\end{matrix}\right.\) \(\Rightarrow VP\le3\)

Dấu "=" xảy ra khi và chỉ khi \(x=1\)

c/ ĐKXĐ: ....

\(\Leftrightarrow2x+12-6\sqrt{2x+3}+5-x-2\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{\left(2x+12\right)^2-36\left(2x+3\right)}{\left(2x+12\right)^2+6\sqrt{2x+3}}+\frac{\left(5-x\right)^2-4\left(4-x\right)}{\left(5-x\right)^2+2\sqrt{4-x}}=0\)

\(\Leftrightarrow\frac{4\left(x-3\right)^2}{\left(2x+12\right)^2+6\sqrt{2x+3}}+\frac{\left(x-3\right)^2}{\left(5-x\right)^2+2\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(\frac{4}{\left(2x+12\right)^2+6\sqrt{2x+3}}+\frac{1}{\left(5-x\right)^2+2\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=3\)

27 tháng 10 2019

câu c em nghĩ các cái mẫu đâu có dấu bình phương đâu ạ?