\(x.\frac{3-x}{x+1}\left(x+\frac{3-x}{x+1}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

20 tháng 10 2020

Check lại đề phát bạn.

6 tháng 6 2021

*Đã hơn 3 ngày mà vẫn chưa có lời giải :(

\(ĐK:x\ne0;y\ne0\)

Với pt(1) : Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

Mặt khác : \(\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2=\left(t^2-2\right)^2\Rightarrow\frac{x^4}{y^4}+\frac{y^4}{x^4}+2=t^4-4t^2+4\)

Từ đó \(\frac{x^4}{y^4}+\frac{y^4}{x^4}=t^4-4t^2+2\)

Theo AM_GM có \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\Leftrightarrow t^2\ge4\Leftrightarrow|t|\ge2\)

Ta có VT của pt (1) : \(g\left(t\right)=t^4-5t^2+t+4,|t|\ge2\)

Có \(g'\left(t\right)=2t\left(2t^2-5\right)+1\)

Nhận xét :

\(t\ge2\Rightarrow2t\left(2t^2-5\right)\ge4\left(8-5\right)>0\Rightarrow g'\left(t\right)>0\)

\(t\le-2\Rightarrow2t\le-4;2t^2-5\ge3\Rightarrow-2t\left(2t^2-5\right)\ge12\Rightarrow2t\left(2t^2-5\right)\le-12\Rightarrow g'\left(t\right)< 0\)

Lập BBT có giá trị nhỏ nhất của g(t)= -2 đạt được tại t= -2 

Vậy từ pt(1) có \(\frac{x}{y}+\frac{y}{x}=-2\left(.\right)\)

Đặt  \(a=\frac{x}{y}\Rightarrow\frac{y}{x}=\frac{1}{a},a\ne0\)

Lúc đó pt (.) \(\Leftrightarrow a+\frac{1}{a}=-2\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\Leftrightarrow x=-y\)

Thay \(x=-y\)vào pt(2) có :

\(x^6+x^2-8x+6=0\Leftrightarrow\left(x-1\right)^2\left(x^4+2x^3+3x^2+4x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x+1\right)^2+2\left(x+1\right)^2+4\right]=0\)

\(\Leftrightarrow x-1=0\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)

Vậy HPT có duy nhất 1 nghiệm \(\left(x;y\right)=\left(1;-1\right)\)

27 tháng 5 2021

Em lớp 7 anh(chị) ạ

22 tháng 7 2019

#)Giải :

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(P=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\div\frac{1}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}}\)

27 tháng 8 2019

Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)

Bien doi PT thanh \(a^2+4b^2=5ab\)

\(\Leftrightarrow a^2-5ab+4b^2=0\)

\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)

\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=65-x\)

\(\Leftrightarrow x=0\left(n\right)\)

\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=64.65-64x\)

\(\Leftrightarrow65x=64.65-65\)

\(\Leftrightarrow x=63\left(n\right)\)

Vay nghiem cua PT la \(x=0,x=63\)