Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Căn xác định với \(2\le x< 3\) ta có \(\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}=0\)
<=> \(\frac{\left(x-2\right)^2}{3-x}-\frac{x^2+1}{3-x}=0\)<=> \(^{x^2-4x+4-x^2-1=0}\)<=> x = 3/4 ( Không TM ) Vậy PTVN
Bài 2:
*)GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(A=\sqrt{x+3}+\sqrt{5-x}\)
\(\ge\sqrt{x+3+5-x}=\sqrt{8}\)
Đẳng thức xảy ra khi \(-3\le x\le5\)
*)GTLN:Áp dụng BĐT Cauchy-Schwarz ta có:
\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2\)
\(\le\left(1+1\right)\left(x+3+5-x\right)\)
\(=2\cdot8=16\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Đẳng thức xảy ra khi \(x=1\)
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
Câu 1/
\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(\left(2\right)\Leftrightarrow3xy-y=1+x\)
\(\Leftrightarrow y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)
\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)
Ta lại có:
\(y=\frac{1+x}{3x-1}\)
\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)
Từ PT (1) ta có
\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)
Làm tiếp nhé
Câu 2/
a/ \(x^2-1=3\sqrt{3x+1}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow x^4-2x^2-27x-8=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)
Tới đây thì đơn giản rồi nhé
b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)
Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)
Thì ta có:
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
PS: Điều kiện xác định bạn tự làm nhé
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)