Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x+1=a; x-2=b
Phương trình trở thành:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow x\in\left\{-1;2;\dfrac{1}{2}\right\}\)
(x+1)(x+2)(x+3)=x3-1
<=>x.(x+2)(x+3)+(x+2)(x+3)=x3-1
<=>(x2+2x)(x+3)+x.(x+3)+2.(x+3)=x3-1
<=>x2.(x+3)+2x.(x+3)+x2+3x+2x+6=x3-1
<=>x3+3x2+2x2+6x+x2+3x+2x+6=x3-1
<=>x3-x3+3x2+2x2+x2+6x+3x+2x+6+1=0
<=>6x2+17x+7=0
<=>6x2+3x+14x+7=0
<=>3x.(2x+1)+7.(2x+1)=0
<=>(2x+1)(3x+7)=0
<=>2x+1=0 hoặc 3x+7=0
<=>x=-1/2 hoặc x=-7/3
Vậy S={-1/2;-7/3}
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)
Ta có: \(-\frac{5}{8}-x=-\frac{3}{20}-\left(-\frac{1}{6}\right)\)
\(\Rightarrow-\frac{5}{8}-x=-\frac{3}{20}+\frac{1}{6}\)
\(\Rightarrow x=-\frac{5}{8}-\left(-\frac{3}{20}+\frac{1}{6}\right)\)
\(\Rightarrow x=-\frac{5}{8}+\frac{3}{20}-\frac{1}{6}\)
\(\Rightarrow x=\frac{-75}{120}+\frac{18}{120}-\frac{20}{120}\)
\(\Rightarrow x=-\frac{77}{120}\)
Vậy \(x=-\frac{77}{120}\)
Chúc bạn hok tốt!
<=> x=\(-\frac{5}{8}+\frac{3}{20}-\frac{1}{6}=-\frac{77}{120}\)
x | -3 2 4 |
x-2 | - - 0 + + |
x+3 | - 0 + + + |
2x-8 | - - - 0 + |
*Nếu x < -3 thì ta có:
- ( x - 2 ) - ( x - 3 )- ( 2x - 8 ) =9
-x + 2 -x + 3 -2x + 8 =9
- ( x + x + 2x ) + ( 2 + 3 + 8 )=9
-4x + 13 =9
-4x = 9-13
-4x = -4
x = 1 ( loại )
*Nếu -3 <= x < 2 thì ta có:
- ( x - 2 ) + ( x - 3 ) - ( 2x - 8 ) = 9
-x + 2 + x - 3 - 2x + 8 = 9
( -x + x - 2x ) + ( 2 - 3 + 8 ) = 9
-2x + 7 = 9
-2x = 2
x = -1 ( chọn )
*Nếu 2 <= x < 4 thì ta có:
( x - 2 ) + ( x - 3 ) - ( 2x - 8 ) = 9
x - 2 + x - 3 - 2x + 8 = 9
( x + x - 2x ) + ( -2 -3 + 8 ) = 9
0x + 3 = 9
0x = 7
=> Không tồn tại giá trị của x
* Nếu x >= 4 thì ta có:
( x - 2 ) + ( x - 3 ) + ( 2x - 8 ) = 9
x - 2 + x - 3 + 2x - 8 = 9
( x + x + 2x ) - ( 2 + 3 + 8 ) = 9
4x - 13 = 9
4x = 22
x = \(\frac{11}{2}\) ( chọn )
Vậy x = -1 hoặc x = \(\frac{11}{2}\)
đề bài : ĐK x khác 1
\(=>x^2\left(x-1\right)+x^2=8\left(x-1\right)^2\)
=>\(x^2\left(x^2-2x+1\right)+x^2-8\left(x^2-2x+1\right)=0\)
=>\(x^4-2x^3+x^2+x^2-8x^2+16x-8\)
\(=>x^4-2x^3-6x^2+16-8=0\)
\(=>x^3\left(x-2\right)-6x\left(x-2\right)+4\left(x-2\right)=0\)
\(=>\left(x-2\right)\left(x^3-6x+4\right)=0\)
=>\(\left(x-2\right)\left(x^3-4x-2x+4\right)=0\)
\(=>\left(x-2\right)\left(x-2\right)\left(x^2+2x-2\right)\)=0 ( phân tích bình thường là ra như này )
\(=>\orbr{\begin{cases}x=2\\x^2+2x-2=0.\Delta'=1+2=3=>x=-1\pm\sqrt{3}\end{cases}}\)( ko biết học ô học cái này chưa nx ??)
zậy
Đăng cho vui, chớ hc hết ròi )):^^