\(x^2+6x+1-\left(2x+1\right)\sqrt{x^2+2x+3}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK: x2+2x+3≥0x2+2x+3≥0

x2+6x+1=(2x+1).√x2+2x+3x2+6x+1=(2x+1).x2+2x+3

⇔x2+2x+3+4x+2=(2x+1).√x2+2x+3+4⇔x2+2x+3+4x+2=(2x+1).x2+2x+3+4

Đặt a=√x2+2x+3a=x2+2x+3b=2x+1b=2x+1, pt trở thành:

a2+2b=ab+4a2+2b=ab+4

⇔a2−4−ab+2b=0⇔a2−4−ab+2b=0

⇔(a−2)(a+2)−b(a−2)=0⇔(a−2)(a+2)−b(a−2)=0

⇔(a−2)(a−b+2)=0⇔(a−2)(a−b+2)=0

⇔[a=2a−b=−2⇔[a=2a−b=−2

.Với a=2⇔√x2+2x+3=2⇔x2+2x−1=0a=2⇔x2+2x+3=2⇔x2+2x−1=0

⇔[x=√2−1(N)x=−√2−1(N)⇔[x=2−1(N)x=−2−1(N)

.Với a−b=−2⇔√x2+2x+3−(2x+1)=−2a−b=−2⇔x2+2x+3−(2x+1)=−2

⇔√x2+2x+3=−2+2x+1=2x−1⇔x2+2x+3=−2+2x+1=2x−1

⇔x2+2x+3=4x2−4x+1⇔x2+2x+3=4x2−4x+1

⇔3x2−6x−2=0⇔3x2−6x−2=0

⇔⎡⎢⎣x=3+√153(N)x=3−√153(L)⇔[x=3+153(N)x=3−153(L)

Vậy...

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

30 tháng 7 2018

a)

DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)

=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)

\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

<=>25x+50=2x-1

=>23x=-51

=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)

=> phương trình vô nghiệm..

b)

ĐKXĐ:\(x\ge1,x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)

Vậy S={1;8}

c) ĐKXĐ:

\(x\ge0\)

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}=-11\)

\(\Leftrightarrow\sqrt{2x}=1\)

\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2018

Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )

\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)

\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow25\left(x+2\right)=2x-1\)

\(\Leftrightarrow25x+50=2x-1\)

\(\Leftrightarrow23x=-51\)

\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)

Vậy phương trình vô nghiệm .

Câu b :

\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy \(S=\left\{1;8\right\}\)

Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}+11=0\)

\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x}-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Chúc bạn học tốt

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



ĐK: \(x\ge-1\)

\(PT\Leftrightarrow2\left(x-2\right)^2+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

Đặt \(x-2=a,\sqrt{x+1}=b\left(a\ge-3,b\ge0\right)\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}\)

Đến đây dễ r nhé :P