K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-x-18+\dfrac{72}{x^2-x}=0\) ( ĐK : \(x\ne0\)\(x\ne1\) )

\(\Leftrightarrow x^2-x+\dfrac{72}{x^2-x}=18\)

Đặt \(x^2-x=a\) . Phương trình trở thành :

\(a+\dfrac{72}{a}=18\)

\(\Leftrightarrow a^2-18a+72=0\)

\(\Leftrightarrow\left(a-6\right)\left(a-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-6=0\\a-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=6\\a=12\end{matrix}\right.\)

Với \(a=6\) :

\(\Leftrightarrow x^2-x=6\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Với \(a=12\) :

\(\Leftrightarrow x^2-x=12\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

Vậy \(S=\left\{-2;-3;3;4\right\}\)

17 tháng 10 2021

Đk: \(x\ne5;x\ne-10\)

Pt: \(\Rightarrow\dfrac{\left(x-2\right)\left(x+5\right)}{x^2}-\dfrac{40}{\left(x-5\right)\left(x+10\right)}=0\)

     \(\Rightarrow\left(x-2\right)\left(x+5\right)\left(x-5\right)\left(x+10\right)-40x^2=0\)

     \(\Rightarrow\left(x^2-12x+20\right)\left(x^2-25\right)-40x^2=0\)

     \(\Rightarrow x^4-12x^3-45x^2+300x=500\)

     \(\Rightarrow\left\{{}\begin{matrix}x=5\left(loại\right)\\x=-5\left(tm\right)\end{matrix}\right.\)

\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)

\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)

hay x=1

18 tháng 5 2021

\(2x^2+3x-5=0\)

\(< =>2x^2-2x+5x-5=0\)

\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(2x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

18 tháng 5 2021

\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )

14 tháng 7 2021

\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)

\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)

\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)

\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)

14 tháng 7 2021

cảm ơn nhaa<33

25 tháng 5 2021

Đk:\(x\ge0\)

Pt \(\Leftrightarrow2\sqrt{x}+5=36+3\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow-\sqrt{x}=22\) (vô nghiệm)

Vậy phương trình vô nghiệm

b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow x^2-6x+9=3\)

\(\Leftrightarrow x^2-6x+6=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)

a: ĐKXĐ: \(x\notin\left\{3;-5\right\}\)

\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)

=>\(\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

=>\(\dfrac{5x+25-3x+9}{15}=\dfrac{5x+25-3x+9}{\left(x-3\right)\left(x+5\right)}\)

=>(x-3)(x+5)=15

=>\(x^2+2x-15-15=0\)

=>\(x^2+2x-30=0\)

=>\(\left(x+1\right)^2=31\)

=>\(\left[{}\begin{matrix}x+1=\sqrt{31}\\x+1=-\sqrt{31}\end{matrix}\right.\Leftrightarrow x=-1\pm\sqrt{31}\left(nhận\right)\)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2+x+1}=3-x\)

=>\(\left\{{}\begin{matrix}x^2+x+1=\left(3-x\right)^2\\x< =3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x^2-6x+9=x^2+x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\-7x=-8\end{matrix}\right.\Leftrightarrow x=\dfrac{8}{7}\left(nhận\right)\)

c:

ĐKXĐ: \(x\in R\)

 \(x^2-x+\sqrt{x^2-x+24}=18\)

=>\(x^2-x+24+\sqrt{x^2-x+24}=42\)

=>\(\left(\sqrt{x^2-x+24}\right)^2+\left(\sqrt{x^2-x+24}\right)-42=0\)

=>\(\left(\sqrt{x^2-x+24}+7\right)\left(\sqrt{x^2-x+24}-6\right)=0\)

=>\(\sqrt{x^2-x+24}-6=0\)

=>\(x^2-x+24=36\)

=>\(x^2-x-12=0\)

=>(x-4)(x+3)=0

=>\(\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

14 tháng 12 2023

ĐKXĐ: x<>-1

\(\dfrac{x^2}{\left(x+1\right)^2}+\dfrac{x}{x+1}-2=0\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x+1}\right)-2=0\)

=>\(\left(\dfrac{x}{x+1}\right)^2+2\left(\dfrac{x}{x+1}\right)-\dfrac{x}{x+1}-2=0\)

=>\(\dfrac{x}{x+1}\left(\dfrac{x}{x+1}+2\right)-\left(\dfrac{x}{x+1}+2\right)=0\)

=>\(\left(\dfrac{x}{x+1}+2\right)\left(\dfrac{x}{x+1}-1\right)=0\)

=>\(\dfrac{x+2x+2}{x+1}\cdot\dfrac{x-x-1}{x+1}=0\)

=>\(\dfrac{3x+2}{x+1}\cdot\dfrac{-1}{x+1}=0\)

=>3x+2=0

=>x=-2/3(nhận)