Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)
\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)
\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2+3x+1}=a\\\sqrt[3]{5x+1}=b\end{matrix}\right.\)
\(\Rightarrow a+a^3-b^3=b\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a^2+ab+b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{x^2+3x+1}=\sqrt[3]{5x+1}\)
\(\Leftrightarrow x^2+3x+1=5x+1\)
\(\Leftrightarrow...\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
\(DK:x\ge1\)
\(\Leftrightarrow\left(3\sqrt{x-1}-3\right)+\left(\sqrt{x+2}-2\right)-\left(10x-20\right)-\left(6\sqrt{x^2+x-2}-12\right)=0\)
\(\Leftrightarrow3\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+2}-2\right)-10\left(x-2\right)-6\left(\sqrt{x^2+x-2}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x+2}+2}-10\left(x-2\right)-\frac{6\left(x^2+x-6\right)}{\sqrt{x^2+x-2}+2}=0\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x+2}+2}-10\left(x-2\right)-\frac{6\left(x-2\right)\left(x+3\right)}{\sqrt{x^2+x-2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x+2}}-10-\frac{6x+18}{\sqrt{x^2+x-2}+2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{3}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x+2}}=10+\frac{6x+18}{\sqrt{x^2+x-2}+2}\end{cases}}\)
Cái PT 2 nó vô nghiệm,chắc la quy dong lên là duoc
Vay PT co nghiem la \(x=2\)
Vẫn là liên hợp nhưng em có cách khác:D Nó sẽ nhanh hơn ở chỗ xử lý cái ngoặc to đấy:)
\(ĐK:x\ge1\)
\(PT\Leftrightarrow6\left(\sqrt{x^2+x-2}-x\right)+12x-24+3\left[\left(x-1\right)-\sqrt{x-1}\right]+x-\sqrt{x+2}=0\)
\(\Leftrightarrow\frac{6\left(x-2\right)}{\sqrt{x^2+x-2}+x}+12\left(x-2\right)+\frac{3\left(x-2\right)\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-2\right)\left(x+1\right)}{x+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{6}{\sqrt{x^2+x-2}+x}+12+\frac{3\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x+1\right)}{x+\sqrt{x+2}}\right]=0\)
Cái ngoặc to không cần đánh giá cũng >0 :D. Vậy x = 2 (TM)
P/s: Em có tính sai chỗ nào không nhỉ:))