Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
\(\begin{cases}3\left(x-7\right)=4\left(y-5\right)\\4x-3y+8=0\end{cases}\)
\(\Leftrightarrow\begin{cases}3x-4y=1\\4x-3y=-8\end{cases}\Leftrightarrow\begin{cases}9x-12y=3\\-16x+12y=32\end{cases}\Leftrightarrow}\begin{cases}-7x=35\\3x-4y=1\end{cases}\Leftrightarrow\begin{cases}x=-5\\y=-4\end{cases}}}\)
\(\begin{cases}3\left(x-7\right)=4\left(y-5\right)\\4x-3y+8=0\end{cases}\)
<=> \(\begin{cases}3x-4y=1\\4x-3y=-8\end{cases}\)<=> \(\begin{cases}9x-12y=3\\-16x+12y=32\end{cases}\)<=> \(\begin{cases}-7x=35\\3x-4y-1\end{cases}\)<=> \(\begin{cases}x=-5\\y=-4\end{cases}\)
Biến đổi phương trình trở thành
\(x^4+2x^2+1=5x^2+10x+5\)
\(\Leftrightarrow\left(x^2+1\right)^2=5\left(x+1\right)^2\)
\(\Leftrightarrow\begin{cases}x^2+1=\sqrt{5}\left(x+1\right)\left(1\right)\\x^2+1=-\sqrt{5}\left(x+1\right)\left(2\right)\end{cases}\)
Giải (1) cho ta \(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)
Phương trình (2) vô nghiệm ( vì \(\Delta< 0\) )
Vậy nghiệm của phương trình đã cho là :
\(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)
x^2=5+4
x^2=9=3^2
x=3
Ta có : x2 - 4 = 5
<=> x2 = 5 + 4
<=> x2 = 9
<=> x2 = 32
<=> x = 3
Vậy x = 3