\(\sqrt{x^4}=7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Ta có : \(\sqrt{x^4}=\sqrt{x^2.x^2}=\sqrt{x^2}.\sqrt{x^2}=x.x=x^2=7\)

\(\Rightarrow x=\sqrt{7}\)

Vậy \(x=\sqrt{7}\)

27 tháng 9 2018

\(\sqrt{x^4}=7\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x^2-7=0\)

\(\Rightarrow\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-\sqrt{7}=0\\x+\sqrt{7}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\)

Vậy....

20 tháng 12 2018

Ui...... người ta nói nó dễ ..................................

\(2\sqrt{x+4}-4\sqrt{2x-6}=x-7\)

\(\Leftrightarrow\sqrt{2^2\left(x+4\right)}-\sqrt{4^2\left(2x-6\right)}=x-7\)

\(\Leftrightarrow\sqrt{4x+16}-\sqrt{32x-96}=x-7\)

\(\Leftrightarrow\left(\sqrt{4x+16}-\sqrt{32x-96}\right)^2=\left(x-7\right)^2\)

\(\Leftrightarrow\sqrt{4x+16}^2-2.\sqrt{4x+16}.\sqrt{32x-96}+\sqrt{32x-96}^2=x^2-14x+49\)

\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{\left(4x+16\right)\left(32x-96\right)}+\left(32x-96\right)=x^2-14x+49\)

\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{128x^2-384x+512x-1536}+\left(32x-96\right)=x^2-14x+49\)

\(\Leftrightarrow\left(-2\sqrt{128x^2-384x+512x-1536}\right)=\left[x^2-14x+49-\left(4x+16\right)-\left(32x-96\right)\right]\)

\(\Leftrightarrow\left(-2\sqrt{128x^2+128x-1536}\right)^2=\left(x^2-50x+129\right)^2\)

\(\Leftrightarrow4.\left(128x^2+128x-1536\right)=\left(x^2-50x\right)^2+2.\left(x^2-50x\right).129+129^2\)

\(\Leftrightarrow512x^2+512x-6144=\left(x^2-50x\right)^2+258.\left(x^2-50x\right)+16641\)

\(\Leftrightarrow512x^2+512x-6144=x^4-100x^3+2500x^2+258x^2-12900x+16641\)

\(\Leftrightarrow-x^4+100x^3-2246x^2+13412x-22785=0\)

\(\Leftrightarrow x_1\approx70,94\) ; \(x_2\approx3,0588\) ; \(x_3=21\) ; \(x_4=5\)

20 tháng 12 2018

Bài này có 1 nghiệm duy nhất thôi nha : x = 5 

tại máy tính của mình ra sai kết quả 

7 tháng 5 2019

ĐKXĐ \(4\ge x\ge-4\)

Đặt \(\sqrt{x-4}=a,\sqrt{x+4}=b\left(a,b\ge0\right)\)

Khi đó \(-a^2+4b^2=3x+20\)

Phương trình tương đương

\(-a^2+4b^2+7a=14b\)

,<=>\(\left(a+2b\right)\left(a-2b\right)-7\left(a-2b\right)=0\).

<=> \(\left(a-2b\right)\left(a+2b-7\right)=0\)

<=> \(\orbr{\begin{cases}a=2b\\a+2b=7\end{cases}}\)

+, \(a=2b\)

Mà \(a^2-b^2=-8\)

=> \(3b^2=-8\left(loại\right)\)

+, \(a+2b=7\)

Mà \(a^2-b^2=-8\)

=>\(\hept{\begin{cases}a=1\\b=3\end{cases}}\)

Khi đó x=5

Vậy \(S=\left\{5\right\}\)

21 tháng 5 2020

Xét pt \(3x+7\sqrt{x-4}=14\sqrt{x+4}-20\)

Với đkxđ x>=4, pt tương đương với

\(3x+20-7\left(2\sqrt{x+4}-\sqrt{x-4}\right)=0\)

\(\Leftrightarrow3x+20-7\cdot\frac{\left(2\sqrt{x+4}\right)^2-\left(\sqrt{x-4}\right)^2}{2\sqrt{x+4}+\sqrt{x-4}}=0\)

\(\Leftrightarrow\left(3x+20\right)\left(1-\frac{7}{2\sqrt{x+4}+\sqrt{x-4}}\right)=0\)

\(\Leftrightarrow2\sqrt{x+4}+\sqrt{x-4}=7\left(x\ge4\right)\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{x+4}+3}+\frac{1}{\sqrt{x-4}+1}\right)=0\)

=> x=5 (tmđk)

Vậy x=5 là nghiệm của pt

9 tháng 9 2017

a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)

10 tháng 9 2017

mà sao bạn k làm giúp mình câu b

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1

13 tháng 7 2019

a) ĐKXĐ : \(x\ge-1\) 

\(\sqrt{16x+16}-\sqrt{9x+9}=4\)\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=4\Leftrightarrow x+1=16\Leftrightarrow x=15\)

b) ĐKXĐ : \(x\ge\frac{2}{3}\)

\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2+x+7-2\sqrt{3x-2}.\sqrt{x+7}=1\)

\(\Leftrightarrow4x+4-2\sqrt{3x^2+19x-14}=0\)\(\Leftrightarrow2x+2-\sqrt{3x^2+19x-14}=0\)

\(\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\Leftrightarrow\left(2x+2\right)^2=3x^2+19x-14\)

\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\Leftrightarrow x^2-11x+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=2\end{cases}\left(tm\right)}\)

c) câu cuối bình phương tương tự câu b

2 tháng 11 2019

Ai hack nick mình thì trả lại đi !!!

nick : 

  • Tên: Vô danh
  • Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
  • Địa chỉ: Huyện Điện Biên - Điện Biên
  • Điểm hỏi đáp: 112SP, 0GP
  • Điểm hỏi đáp tuần này: 47SP, 0GP
  • Thống kê hỏi đáp

​​Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn 

Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick 

Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !

LInk : https://olm.vn/thanhvien/lehoangngantoanhoc

20 tháng 9 2019

\(a,\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\\sqrt{x+2}=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-\frac{17}{9}\left(l\right)\end{cases}}\)

\(b,\Leftrightarrow\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)

Bạn giải nốt nhá

30 tháng 3 2020

\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)

ĐKXĐ: Tự tìm nhé.

\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)

Phương trình <=>  \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)

(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)

\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)

\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))

Tự làm tiếp nhé

30 tháng 3 2020

ĐK: \(x\ge\frac{1}{2}\)

\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)

\(\Leftrightarrow x=2\)\(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))

KL:...