Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2}+\sqrt{x-7}=\sqrt{x-10}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)+\left(\sqrt{x-7}-2\right)+\left(1-\sqrt{x-10}\right)+\left(4-\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\frac{x-11}{\sqrt{x-2}+3}+\frac{x-11}{\sqrt{x-7}+2}-\frac{x-11}{\sqrt{x-10}+1}-\frac{x-11}{\sqrt{x+5}+4}=0\)
\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{\sqrt{x-2}+3}+\frac{1}{\sqrt{x-7}+2}-\frac{1}{\sqrt{x-10}+1}-\frac{1}{\sqrt{x+5}+4}\right)=0\)
\(\Leftrightarrow x=11\)
ĐK: x >= -1
Bình phương hai vế ta có:
\(x+1+2\sqrt{\left(x+1\right)\left(x+10\right)}+x+10=x+2+2\sqrt{\left(x+2\right)\left(x+5\right)}+x+5\)
Rút gọn
\(2x+11+2\sqrt{\left(x+1\right)\left(x+10\right)}=2x+7+2\sqrt{\left(x+2\right)\left(x+5\right)}\)
<=> \(4+2\sqrt{\left(x+1\right)\left(x+10\right)}=2\sqrt{\left(x+2\right)\left(x+5\right)}\)
<=> \(2+\sqrt{\left(x+1\right)\left(x+10\right)}=\sqrt{\left(x+2\right)\left(x+5\right)}\)
Bình phương hai vế
\(4+4\sqrt{x^2+11x+10}+x^2+11x+10=x^2+7x+10\)
\(\Leftrightarrow4\sqrt{x^2+11x+10}+4x+4=0\)
\(\Leftrightarrow\sqrt{x^2+11x+10}+x+1=0\) ( đến đây bạn có thể chuyển x+1 sang vế khác đặt điều kiện rồi bình phương hai vế cũng có thể làm theo cách dưới như của mình)
Mà \(x\ge-1\)
khi đó: \(\sqrt{x^2+11x+10}+x+1\ge0\)
Dấu "=" xảy ra <=> x=-1 thỏa mãn
Vậy x=-1
Xem tại đây
Câu hỏi của socola - Toán lớp 9 | Học trực tuyến
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
ĐKXĐ: \(x\ge10\). Đặt \(\sqrt{x-2}=a\ge0;\sqrt{x-7}=b\ge0;\sqrt{x+5}=c\ge0;\sqrt{x-10}=d\ge0\).Ta thấy:
(x - 2) - (x - 7) = 5 ; (x + 5) - (x - 10) = 15 do đó ta có: \(3\left(a^2-b^2\right)=c^2-d^2\)mà a + b = c + d. Suy ra:
\(3\left(a-b\right)\left(a+b\right)-\left(c-d\right)\left(c+d\right)=0\Leftrightarrow3\left(a+b\right)\left(3a-3b-c+d\right)=0\)
Nếu a + b = 0 thì x đồng thời bằng 2 và bằng 7 nên vô lí.
Nếu 3a - 3b - c + d = 0 => 3a - 3b = c - d (1) mà a + b = c + d (2). Trừ từng vế của (1) và (2) ta có: 2a - 4b = -2d <=> d + a = 2b
\(\Leftrightarrow\sqrt{x-10}+\sqrt{x-2}=2\sqrt{x-7}\Leftrightarrow2x-12+2\sqrt{\left(x-10\right)\left(x-2\right)}=4x-28\)
\(\Leftrightarrow x-8=\sqrt{x^2-12x+20}\Leftrightarrow x^2-16x+64=x^2-12x+20\Leftrightarrow x=11\) (thỏa mãn)
Vậy x = 11