K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

<=> \(7+\sqrt{2x}=9+6\sqrt{5}+5\)

<=> \(\sqrt{2x}=7+6\sqrt{5}\)

<=> 2x = 229 + 84\(\sqrt{5}\)

<=> x = 114,5 + 42\(\sqrt{5}\)

13 tháng 8 2021

ĐK:\(x\ge\dfrac{5}{2}\)

Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

    \(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)

    \(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

    \(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

    \(\Leftrightarrow2\sqrt{2x-5}=10\)

    \(\Leftrightarrow\sqrt{2x-5}=5\)

    \(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow x=15\)

16 tháng 7 2017

 nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá  dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé ) 

16 tháng 7 2017

bn lm giúp mk đc k?

Đặt \(\sqrt{2x-1}=a;\sqrt{3-y}=b\)

Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{5}{b}=7\\\dfrac{3}{a}-\dfrac{7}{b}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{15}{b}=21\\\dfrac{3}{a}-\dfrac{7}{b}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{22}{b}=22\\\dfrac{1}{a}+\dfrac{5}{b}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-y=1\\2x-1=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=\dfrac{5}{8}\end{matrix}\right.\)

14 tháng 2 2018

Thắng Chó Râm tặc

Ta có: \(\sqrt{2x-2+2\sqrt{2x-3}+\sqrt{2x+13+8\sqrt{2x-3}}}=5\)

\(\Leftrightarrow\sqrt{2x-2+2\sqrt{2x-3}+2\sqrt{2x-3}+4}=5\)

\(\Leftrightarrow\sqrt{2x+2+4\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot2+4+1}=5\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2+1=25\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2=24\)

\(\Leftrightarrow\sqrt{2x-3}+2=2\sqrt{6}\)

\(\Leftrightarrow2x-3=\left(2\sqrt{6}-2\right)^2\)

\(\Leftrightarrow2x-3=28-8\sqrt{6}\)

\(\Leftrightarrow2x=31-8\sqrt{6}\)

hay \(x=\dfrac{31-8\sqrt{6}}{2}\)

16 tháng 7 2021

`\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8sqrt{2x-3}}=5(x>=3/2)`

`<=>\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5`

`<=>\sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5`

`<=>\sqrt{2x-3}+1+\sqrt{2x-3}+4=5`

`<=>2\sqrt{2x-3}=0`

`<=>\sqrt{2x-3}=0<=>2x-3=0<=>x=3/2(tmdk)`

Vậy `S={3/2}`