\(\sqrt{2x+\sqrt{6x^2+1}}=x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

PT\(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\2x+\sqrt{6x^2+1}=\left(x+1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\\sqrt{6x^2+1}=x^2+1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\6x^2+1=\left(x^2+1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^4-4x^2=0\end{cases}\Leftrightarrow}x=0;x=2}\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

19 tháng 8 2017

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

19 tháng 8 2017

đúng nhưng b,c,d đâu

\(x+\sqrt{5+\sqrt{x-1}}=6\)

\(\Leftrightarrow x-6+\sqrt{5+\sqrt{x-1}}=0\)

\(\Leftrightarrow x-1-5+\sqrt{5+\sqrt{x-1}}=0\)

Đặt \(\sqrt{x-1}=t\), ta có

\(t^2-5+\sqrt{5+t}=0\)

P/s tới đây giải tiếp nha bn :))

19 tháng 8 2020

a) \(\sqrt{2x+\sqrt{6x^2+1}}=x+1\)

\(\Leftrightarrow2x+\sqrt{6x^2+1}=x^2+2x+1\)

\(\Leftrightarrow\sqrt{6x^2+1}=x^2+1\)

\(\Leftrightarrow6x^2+1=x^4+2x^2+1\)

\(\Leftrightarrow x^4-4x^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

30 tháng 8 2019

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

30 tháng 8 2019

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)