K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Bạn làm được chưa giải bài này giúp mình với

4 tháng 7 2020

pt(1)\(\Leftrightarrow\left(\sqrt{2x^2+x+1}-2x\right)+\left(\sqrt{x^2-x+1}-x\right)=0\left(đk;x\ge0\right)\)

\(\Leftrightarrow\frac{-2x^2+x+1}{\sqrt{2x^2+x+1}+2x}+\frac{-x+1}{\sqrt{x^2-x+1}+x}=0\)

\(\Leftrightarrow\frac{\left(2x+1\right)\left(x-1\right)}{\sqrt{2x^2+x+1}+2x}+\frac{x-1}{\sqrt{x^2-x+1}+x}=0\)

\(\Leftrightarrow x=1\)

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )

 

NV
12 tháng 5 2021

ĐKXĐ: ...

\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)

\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)

\(\Leftrightarrow...\)

12 tháng 5 2021

Cảm ơn chú nhìu :33

NV
20 tháng 8 2021

a.

ĐKXĐ: \(x\ge2\)

\(\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+1\right)^2-x\)

\(\Leftrightarrow\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x-2}=x-\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x-2}+\sqrt{x}=x+1\)

\(\Leftrightarrow2x-2+2\sqrt{x^2-2x}=x^2+2x+1\)

\(\Leftrightarrow x^2-2\sqrt{x^2-2x}+3=0\)

\(\Leftrightarrow\left(\sqrt{x^2-2x}-1\right)^2+2x+2=0\) (vô nghiệm do \(2x+2>0\))

Vậy pt đã cho vô nghiệm

NV
20 tháng 8 2021

b. ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow2x^2-3x+1+2\left(x-1\right)\sqrt{2x^2-3x+1}+x^2-2x-3=0\)

Đặt \(\sqrt{2x^2-3x+1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t+x^2-2x-3=0\)

\(\Delta'=\left(x-1\right)^2-\left(x^2-2x-3\right)=4\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x-2=-x-1\\t=1-x+2=3-x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-3x+1}=-x-1\left(x\le-1\right)\\\sqrt{2x^2-3x+1}=3-x\left(x\le3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x=0\left(vn\right)\\x^2+3x-8=0\left(x\le3\right)\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{-3\pm\sqrt{41}}{2}\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

4 tháng 4 2021

dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua

NV
22 tháng 3 2021

a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)

\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)

\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)

\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)

\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)

\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)

\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)

\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)

NV
22 tháng 3 2021

b. ĐKXĐ: \(x\ge5\)

\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)

\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2+3b^2=5ab\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
5 tháng 1 2021

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\\dfrac{1}{\sqrt{3x-2}+\sqrt{x+1}}=x+1\left(1\right)\end{matrix}\right.\)

Do \(x\ge\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT< 1\\VP>1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm

Vậy pt có nghiệm duy nhất \(x=\dfrac{3}{2}\)

4 tháng 6 2021

Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)

Thay x=-1 vào pt thấy thỏa mãn

Vậy pt có nghiệm duy nhất x=-1

Bài làm sai, thiếu giá trị của $x$, ĐKXĐ loằng ngoằng. 

Chị/anh xem lại nhé! Đây là câu cuối của đề thi tuyển sinh 10 năm nay ở Khánh Hòa.