Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m2x + 1 > m( x + 1)
<=> m2x - mx > m - 1
<=> x(m2 - m ) > m - 1
<=> xm( m - 1) > m - 1 ( 1)
* Với : m = 1 , BPT ( 1) <=> 0x > 0 ( vô lý )
* Với : m > 1 , BPT ( 1) <=> x > \(\dfrac{1}{m}\)
* Với : m < 1 , BPT ( 1) <=> x < \(\dfrac{1}{m}\)
KL....
câu a và b e thay m=0 và m=3 vào pt.
câu c e thay x=-2 vào pt và tìm m
a,với m=0 thì
4x^2 - 25 +0^2 + 4*0*x=0
4x^2-25=0
(2x-5)(2x+5)=0
2x-5=0 hoặc 2x+5=0
x=5/2 hoặc x=-5/2
b,với m=-3 thi
4x^2-25+9-12x=0
4x^2-12x-16=0
(2x-4)^2-36=0
(2x-4-6)(2x-4+6)=0
(2x-10)(2x+2)=0
2x-10=0 hoặc 2x+2=0
x=5 hoặc x=-1
c,với x=-2 thì
16-25+m^2-8m=0-4-5
m^2-8m+16-25=0
(m-4)^2-5^2=0
(m-4-5)(m-4+5)=0
(m-9)(m+1)=0
m-9=0 hoặc m+1=0
m=9 hoặc m=-1
Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .
Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành:
( x - a) (x - b)2 với a khác b
Đối với bài trên chúng ta làm như sau:
\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)
<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)
<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)
Phương trình ba đầu có 2 nghiệm phân biệt
đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)
Khi đó phương trình có hai nghiệm 2 và -2 khác nhau
Vậy m = - 1 thỏa mãn
( Lớp 8 chưa học đen ta nên giải hơi lủng)
Thay x=-1 vào (*), ta được:
\(-m^2+4=2m+4\)
\(\Leftrightarrow-m^2-2m=4-4\)
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)
\(\Leftrightarrow m=0\)hoặc \(m=-2\)
Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1