Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy ôn lại phần:Pương chình dạng tích - Toán lớp 8 - sách giáo khoa
ta gọi
ab=0,5 (a+b)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} ax+bx=67 kết quả =67\)
a) A= x^2 - 6x + 5
A=x^2-6x+9-4
A=(x-3)^2-4>hoặc= -4
Pmin =-4 <=> x-3=0 <=> x=3
P/s máy mình lag nên ko sủ dụng được cồn thức
2)Tính nhanh:
a)\(202^2-54^2+256.352\)
\(=\left(202-54\right)\left(202+54\right)+256.352\)
\(=148.256+256.352\)
\(=256\left(148+352\right)\)
\(=256.500\)
\(=128000\)
b)\(621^2-769.373-148^2\)
\(=621^2-148^2-769.373\)
\(=\left(621-148\right)\left(621+148\right)-769.373\)
\(=473.769-769.373\)
\(=769\left(473-373\right)\)
\(=769.100\)
\(=76900\)
\(a,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-4y+5\right)\left(3x+2y+3\right)\)
\(b,9x^2+90x+225-\left(x-7\right)^2\)
\(=9\left(x^2+10x+25\right)-\left(x-7\right)^2\)
\(=9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15\right)^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
\(=2\left(x+11\right).4\left(x+2\right)\)
\(=8\left(x+2\right)\left(x+11\right)\)
\(c,49\left(y-4\right)^2-9y^2-36y-36\)
\(=\left\{\left[7\left(y-4\right)\right]^2-\left(3y\right)^2\right\}-\left(36y+36\right)\)
\(=\left(7y-28-3y\right)\left(7y-28+3y\right)-36\left(y+1\right)\)
\(=\left(4y-28\right)\left(10y-28\right)-36\left(y+1\right)\)
\(=4\left(y-7\right)2\left(5y-14\right)-36\left(y+1\right)\)
\(=8\left(y-7\right)\left(5y-14\right)-36\left(y+1\right)\)
\(=4\left[2\left(y-7\right)\left(5y-14\right)-9\left(y+1\right)\right]\)
mk ko chắc là câu này mk lm đg
\(d,x^2-5x-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-\left(7x+14\right)\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
a) Ta có: \(4x^2-6x\)
\(=2x\left(2x-3\right)\)
b) Ta có: \(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có: 3(x-y)-5x(y-x)
=3(x-y)+5x(x-y)
=(x-y)(3+5x)
d) Ta có: \(x^3-2x^2+5x\)
\(=x\left(x^2-2x+5\right)\)
e) Ta có: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=\left(x+3y\right)\left(5-15x\right)\)
\(=5\left(x+3y\right)\cdot\left(1-3x\right)\)
f) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2+4\right)\)
\(=2\left(x+1\right)\left(x^2+2\right)\)
b) \(-x^2-12x+21=\left(3-x\right)\left(x+11\right).\)
\(\Leftrightarrow-x^2-12x+21=-x^2-8x+33\)
\(\Leftrightarrow33+4x=21\)
\(\Leftrightarrow-4x=12\)
\(\Rightarrow x=-3\)
c,\(9x+5x^2+1=5x^2-22+13x\)
\(\Leftrightarrow4x-22=1\)
\(\Leftrightarrow4x=23\)
\(\Rightarrow x=\frac{23}{4}\)
Mk làm mẫu cho 1 pt nha !
a,
pt <=> 4x^2-7x+5 = 2x^2-5x-18
<=> (4x^2-7x+5)-(2x^2-5x-18) = 0
<=> 4x^2-7x+5-2x^2+5x+18 = 0
<=> 2x^2-2x+23 = 0
<=> x^2-x+23/2 = 0
<=> (x^2-x+1/4)+45/4 = 0
<=> (x-1/2)^2+45/4 = 0
=> pt vô nghiệm [ vì (x-1/2)^2+45/4 > 0 ]
P/S: Tham khảo nha
Rút gọn
a) Ta có: \(2x^2\left(5x^3-4x^2y-7xy+1\right)\)
\(=10x^5-8x^4y-14x^3y+2x^2\)
b) Ta có: \(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)\cdot x\)
\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)
\(=10x^4-7x^3-5x^2\)