Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)
2.
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=t>0\)
\(\Rightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\)
\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\frac{t^2-9}{2}\)
Pt trở thành:
\(t-\frac{t^2-9}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+3}+\sqrt{6-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(x+3\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)
Đặt \(\sqrt[3]{x^2+5x-2}=t\)
\(\Rightarrow t^3-2t+4=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)
\(\Leftrightarrow t=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)
\(\Leftrightarrow x^2+5x-2=-8\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
( x+ 1 )( x + 4) = x^2 + 5x + 4
Đặt t= x^2 + 5x + 2 ta có
t + 2 - 3 căn t = 6
Đến đây tự giải
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
Đặt \(x^2+5x+3=t\) (1) \(\Rightarrow x^2+5x=t-3\)
Pt: \(\Rightarrow\)\(x^2+5x+6-2\sqrt{t}=6\)
\(\Rightarrow t-3-6-2\sqrt{t}-6=0\Rightarrow t-2\sqrt{t}-15=0\)
\(\Rightarrow\left[{}\begin{matrix}t=5\\t=-3\end{matrix}\right.\)
Thay t=5 vào (1) ta đc: \(x^2+5x+3=5\Rightarrow x^2+5x-2=0\Rightarrow x=\dfrac{-5\pm\sqrt{33}}{2}\)
Thay t=-3 vào (1) ta đc:
\(x^2+5x+3=-3\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
câu này có cần đặt điều kiện ko ak