K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(pt\Leftrightarrow\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{\left(1+x\right)\left(1-x\right)}\right)=8\)

Đặt \(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{cases}\left(a,b\ge0\right)}\) thì có:

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(a+b\right)\left(2+2ab\right)=8\end{cases}}\). Xét \(pt\left(2\right)\) có:

\(\left(a+b\right)\left(a^2+b^2+2ab\right)=8\)

\(\Leftrightarrow\left(a+b\right)^3=8=2^3\Leftrightarrow a+b=2\)

Hay \(\sqrt{1+x}+\sqrt{1-x}=2\)

Bình phương 2 vế rồi thu gọn được x=0

17 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(pt\Leftrightarrow\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{\left(1+x\right)\left(1-x\right)}\right)=8\)

Đặt \(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{cases}\left(a,b\ge0\right)}\) thì có:

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(a+b\right)\left(2+2ab\right)=8\end{cases}}\). Xét \(pt\left(2\right)\) có:

\(\left(a+b\right)\left(a^2+b^2+2ab\right)=8\)

\(\Leftrightarrow\left(a+b\right)^3=8=2^3\Leftrightarrow a+b=2\)

Hay \(\sqrt{1+x}+\sqrt{1-x}=2\)

Bình phương 2 vế rồi thu gọn được x=0

13 tháng 1 2021

Lấy phương trình trên trừ phương trình dưới thu được:

\(2\left(y-x\right)=-2\Rightarrow y=x-1\)

Thay vào phương trình dưới suy ra:

\(2\sqrt{2}x=4\sqrt{2}0\Rightarrow x=2\Rightarrow y=1\)

13 tháng 1 2021

Sửa lại tí. \(2\sqrt{2}x=4\sqrt{2}\Rightarrow x=2\Rightarrow y=1\)

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)