\(\frac{x-1}{2}\)(x-2) =\(\frac{x-1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

<=> \(\frac{x^2-3x+2}{2}=\frac{x^2+2x-3}{2}\)

=> x2 - 3x + 2 = x2 + 2x - 3

<=> 5x = 5

<=> x = 1

Vậy S = {1}

\(\frac{x-1}{2}\left(x-2\right)=\frac{x-1}{2}\left(x+3\right)\)

\(\frac{\left(x-1\right)\left(x-2\right)}{2}=\frac{\left(x-1\right)\left(x+3\right)}{2}\)

\(\left(x-1\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)

\(x^2-2x-x+2=x^2+3x-x-3\)

\(x^2-3x+2=x^2+3x-x-3\)

\(x^2+3x+2=2x-3\)

\(-3x+2=2x-3\)

\(2=2x-3+3x\)

\(2=5x-3\)

\(5x=5\Leftrightarrow x=1\)

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

21 tháng 1 2018

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)

\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)

\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)

\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)

\(\Rightarrow2\left(2x\right)=16\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

vậy \(x=4\)

\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)

\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)

\(\Rightarrow6x+1+5x-5=3x-6\)

\(\Rightarrow11x-3x=-6+4\)

\(\Rightarrow8x=-2\)

\(\Rightarrow x=\frac{-1}{4}\)

3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)

\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)

\(\Rightarrow3x^2-3x=-4+4\)

\(\Rightarrow3x\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

4 tháng 4 2019

a) 

\(\frac{x-2}{x+2}\) + \(\frac{3}{x-2}\) =\(\frac{X^2-11}{X^2-4}\)

=> MTC = ( X-2) * (X+2)

<=> \(\frac{\left(x-2\right)\cdot\left(x-2\right)}{\left(x+2\right)\cdot\left(x-2\right)}\) + \(\frac{3\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

=> ( x - 2 ) ( x - 2 ) + 3 ( x + 2 ) = \(x^2\)-  11

<=>( \(x^2\)- 4x + 4 ) + 3x + 6 = \(x^2\)- 11

=> \(x^2\)- 4x + 4 + 3x + 6 = \(x^2\)- 11

=> \(x^2\)- 4x + 4 + 3x +6 - \(x^2\)- 11 = 0

=>   -x + 10 = 0

=>    -x = -10

=> x = 10

 các câu tiếp tương tự :)

14 tháng 5 2020

Bài làm

@Đặng Đặng: khi chuyển vế (-11 ) bạn không đổi dấu nên dẫn đến bị sai rồi.

a) \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)   ĐKXĐ: \(x\ne\pm2\)

\(\Rightarrow\left(x-2\right)\left(x-2\right)+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\) ( thỏa mãn điều kiện xác định )

Vậy x = 21 là nghiệm phương trình.

b) \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)     ĐKXĐ: \(x\ne\pm1\)

\(\Rightarrow\left(x+1\right)+2\left(x-1\right)=x\)

\(\Leftrightarrow x+1+2x-2=x\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\) ( TMĐKXĐ )

Vậy x = 1/2 là nghiệm phương trình.

c) \(\frac{2}{x-1}+\frac{x^2+5}{\left(x+1\right)\left(x-2\right)}=\frac{1}{\left(x-2\right)}\)

\(\Leftrightarrow\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}+\frac{\left(x^2+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{1\left(x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow\left(2x+1\right)\left(x-2\right)+\left(x^2+5\right)\left(x-1\right)=1\left(x^2-1\right)\)

\(\Leftrightarrow2x^2-4x+x-2+x^3-x^2+5x-5=x^2-1\)

\(\Leftrightarrow x^3+2x-6=0\)

~ Đến đây tự lm tiếp ~

17 tháng 8 2019

Câu a chỉ cần quy đồng là được

Câu b tách cái mẫu thứ 3 thành (x-1)(x-2) r quy đồng 2 cái trước là được rồi

17 tháng 8 2019

b) \(\frac{x+1}{x-1}-\frac{x+2}{x-2}=\frac{1}{x^2-3x+2}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}-\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=\frac{1}{x^2-x-2x+2}\)

\(\Leftrightarrow\frac{x^2-x-2}{\left(x-1\right)\left(x-2\right)}-\frac{x^2+x-2}{\left(x-1\right)\left(x-2\right)}=\frac{1}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow\frac{-2x}{\left(x-1\right)\left(x-2\right)}=\frac{1}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

12 tháng 2 2020

Bạn kiểm tra lại đề bài nhé!

19 tháng 1 2017

Đặt x-2= y viết cho gọn

\(\frac{2}{x-1}=\frac{1}{x-3}-\frac{1}{x-1}\Rightarrow\left(x-1\right)=-\left(x-2\right)\Rightarrow x=\frac{3}{2}\)

10 tháng 2 2020

\(ĐKXĐ:x\inℝ\)

\(\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}=\frac{5}{3}\)

\(\Leftrightarrow\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}-\frac{5}{3}=0\)

\(\Leftrightarrow\frac{6x\left(x^2+x+1\right)-3x\left(x^2-x+1\right)-5\left(x^4+x^2+1\right)}{3\left(x^4+x^2+1\right)}=0\)

\(\Leftrightarrow6x^3+6x^2+6x-3x^3+3x^2-3x-5x^4-5x^2-5=0\)

\(\Leftrightarrow-5x^4+3x^3+4x^2+3x-5=0\)

\(\Leftrightarrow-5x^4+5^3-2x^3+2x^2+2x^2-2x+5x-5=0\)

\(\Leftrightarrow-5x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-5x^3-2x^2+2x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-5x^3+5x^2-7x^2+7x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[-5x^2\left(x-1\right)-7x\left(x-1\right)-5\left(x-1\right)\right]=0\)

\(\Leftrightarrow-\left(x-1\right)^2\left(5x^2+7x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x^2+7x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x^2+\left(2x+\frac{7}{4}\right)^2+\frac{31}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1\right\}\)