Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)
\(=>\frac{2}{x+1}=\frac{1}{x+1}\)
\(=>2x+2=x+1\)
\(=>2x-x=1-2=-1\)
\(=>x=-1\)
vậy nghiệm của phương trình trên là {-1}
À quên ĐKXĐ của câu a là \(x\ne-1\)
Nên \(x\in\varnothing\)nhé :v
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
c) \(\frac{x-3}{x-2}+\frac{x-2}{x-4}=1\) đặt x-2 =t " cho bé hệ số lại
ĐK : \(\left\{\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t\ne0\\t\ne-2\end{matrix}\right.\)
\(\frac{t-1}{t}=\frac{t}{t-2}\Leftrightarrow\left(t-1\right)\left(t-2\right)=t^2\Leftrightarrow t^2-3t+2=t^2\Rightarrow-3t=-2\)
\(t=\frac{2}{3}\Rightarrow x=2+\frac{2}{3}=\frac{8}{3}\)
a) \(A=\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3x}\) xem lại đề thấy cái mẫu VP vô duyên thế!
b) \(B=\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\) MSC=(x^3-1)
\(B=\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(4x^2-1\right)}{MSC}=\frac{\left(2x^2+2x+2\right)+\left(2x^2+x-3\right)-4x^2+1}{MSC}=0\)
\(B=0\Leftrightarrow\frac{3x}{MSC}=0=>x=0\) thảo mãn đk x khác 1
Kết luận: x=0 là nghiệm duy nhất.
a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)
<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)
<=>5(x+3)+3(x-2)>6(x+1)
<=>5x+15+3x-6>6x+6
<=>8x-6x >6-15+6
<=>2x >-3
<=>x >-1,5
Vậy tập nghiệm của bất phương trình là {x/x>-1,5}
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)
\(ĐKXĐ:x\ne\frac{3}{2}\)
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+2x+7=x^2+10\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\left(KTMĐKXĐ\right)\)
Vậy phương trình vô nghiệm
ĐKXĐ: x khác 3/2
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
<=> \(\frac{x^2+4x+4}{2x-3}-1=\frac{x^2+10}{2x-3}\)
<=> x^2 + 4x + 4 - 2x + 3 = x^2 + 10
<=> x^2 + 4x + 4 - 2x + 3 - x^2 - 10 = 0
<=> 2x - 3 = 0
<=> 2x = 0 + 3
<=> 2x = 3
<=> x = 3 (ktmdk)
=> pt no