\(\dfrac{\sqrt{3}}{Cos^2x}+\dfrac{4+2Sin2x}{Sin2x}-2\sqrt{3}=2\left(Cot...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 9 2021

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{\sqrt{3}}{cos^2x}+2+\dfrac{2}{sinx.cosx}-2\sqrt{3}=2\left(\dfrac{1}{tanx}+1\right)\)

\(\Leftrightarrow\sqrt{3}\left(1+tan^2x\right)+\dfrac{\dfrac{2}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}}+2-2\sqrt{3}=2\left(\dfrac{1}{tanx}+1\right)\)

\(\Leftrightarrow\sqrt{3}tan^2x+\dfrac{2\left(1+tan^2x\right)}{tanx}+2-\sqrt{3}=\dfrac{2}{tanx}+2\)

\(\Leftrightarrow\sqrt{3}tan^3x+2\left(1+tan^2x\right)-\sqrt{3}tanx=2\)

\(\Leftrightarrow\sqrt{3}tan^3x+2tan^2x-\sqrt{3}tanx=0\)

\(\Leftrightarrow...\)

20 tháng 8 2018

a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)

ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)

(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)

⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)

\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)

Đến đây tự giải tiếp nha nhớ đối chiếu đk.

20 tháng 8 2018

b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)

ĐKXĐ: sinx≠0 và cosx≠1

(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)

⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x

⇔2cos3x - cos2x - 2cosx +1 = 0

⇔ (cosx-1)(cosx+1)(2cosx-1)=0

NV
27 tháng 9 2020

3.

\(4sinx.cosx-2sinx+1-2cosx=0\)

\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

4.

\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)

Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
27 tháng 9 2020

5.

\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

6.

\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)

\(\Leftrightarrow14sin^2x-5sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)

15 tháng 6 2016

điều kiện : cosx, sinx\(\ne\)0

<=>x\(\ne\left\{k\pi;\frac{\pi}{2}+k\pi,k\in Z\right\}\)

phương trình tương đương:

\(\frac{\sqrt{3}}{cos^2x}\)+\(\frac{4}{sin2x}\)+2-2\(\sqrt{3}\)-2cotx-2=0

<=>\(\frac{\sqrt{3}}{cos^2x}\)+\(\frac{4}{sin2x}\) - 2\(\sqrt{3}\)-2\(\frac{cosx}{sinx}\)=0

<=>\(\frac{\sqrt{3}}{cos^2x}\)+\(\frac{2}{sinxcosx}\)-2\(\sqrt{3}\)-2\(\frac{cosx}{sinx}\)=0

<=>\(\frac{\sqrt{3}.sinx+2cosx-2\sqrt{3}.sinx.cos^2x-2cosx^3}{sinx.cos^2x}\)=0

=>\(\sqrt{3}.sinx+2cosx-2\sqrt{3}sinx.cos^2x-2cos^3\)=0

rồi bạn nhóm lại

6 tháng 4 2016

\(\Leftrightarrow\cos4x+\cos2x+\sqrt{3}\left(1+\sin2x\right)=\sqrt{3}\left(1+\cos\left(4x+\frac{\pi}{2}\right)\right)\)

\(\Leftrightarrow\cos4x+\sqrt{3}\sin4x+\sqrt{3}\sin2x=0\)

\(\Leftrightarrow\sin\left(4x+\frac{\pi}{6}\right)+\sin\left(2x+\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow2\sin\left(3x+\frac{\pi}{6}\right)\cos x=0\)

\(\Leftrightarrow\begin{cases}x=-\frac{\pi}{18}+k\frac{\pi}{3}\\x=\frac{\pi}{2}+k\pi\end{cases}\)

Vậy phương trình có 2 nghiệm \(x=-\frac{\pi}{18}+k\frac{\pi}{3}\) và \(x=\frac{\pi}{2}+k\pi\)