\(\dfrac{1}{2}\)(x + 1) + \(\dfrac{1}{4}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2021

\(\rightarrow\dfrac{1}{2}x+\dfrac{1}{2}+\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{3}x-\dfrac{2}{3}\)

\(\rightarrow\dfrac{1}{2}x+\dfrac{1}{4}x+\dfrac{1}{3}x=3-\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{3}{4}\)

\(\rightarrow\dfrac{13}{12}x=\dfrac{13}{12}\)

\(\rightarrow x=1\)

31 tháng 1 2021

undefined

22 tháng 4 2017

a) 1x3+3=x32x1x−3+3=x−32−x ĐKXĐ: x2x≠2

Khử mẫu ta được: 1+3(x2)=(x3)1+3x6=x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3

3x+x=3+613x+x=3+6−1

⇔4x = 8

⇔x = 2.

x = 2 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

b) 2x2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x3x≠−3

Khử mẫu ta được:

14(x+3)14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)

14x2+42x14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

24 tháng 3 2017

bạn nên bổ sung chữ "bất"haha

1)

\(x-\dfrac{x-1}{3}+\dfrac{x+2}{6}>\dfrac{2x}{5}+5\\ \Leftrightarrow x-\dfrac{x-1}{3}+\dfrac{x+2}{6}-\dfrac{2x}{5}-5>0\\ \Leftrightarrow\dfrac{30x-10\left(x-1\right)+5\left(x+2\right)-2x\cdot6-5\cdot30}{30}>0\\ \Leftrightarrow30x-10x+10+5x+10-12x-150>0\\ \Leftrightarrow30x-10x=5x-12x>-10-10+150\\ \Leftrightarrow13x>130\\ \Leftrightarrow13x\cdot\dfrac{1}{13}>130\cdot\dfrac{1}{13}\\ \Leftrightarrow x>10\)

Vậy tập ngiệm của bât hương trình là {x/x>10}

mình mới học đến đây nên cách giải còn dài, thông cảm nha

24 tháng 3 2017

2)

\(\dfrac{2x+6}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{x+3}{3}-\dfrac{x-2}{9}-1< 0\\ \Leftrightarrow\dfrac{3\left(x+3\right)-x+2-9}{9}< 0\\ \Leftrightarrow3x+9-x+2-9< 0\\ \Leftrightarrow3x-x< -9+9-2\\ \Leftrightarrow2x< -2\\ \Leftrightarrow2x\cdot\dfrac{1}{2}< -2\cdot\dfrac{1}{2}\Leftrightarrow x< -1\)

Vậy tập nghiệm của bất phương trình là {x/x<-1}

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3
30 tháng 4 2018

4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)

ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)

\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)

\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)

S=\(\left\{1\right\}\)

30 tháng 4 2018

mấy bài còn lại dễ ẹt cứ bình tĩnh làm là ok

26 tháng 7 2018

các bn giúp mik với!! vài câu cx được

a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)

=>-12x-4=2x-10

=>-14x=-6

hay x=3/7

b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

hay x=3/5(loại)

c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-1=x^2-x+1\)

=>4x=2

hay x=1/2(nhận)

b: \(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+x-6\right)\)

\(\Leftrightarrow3x^2-10x+3=3x^2+3x-18\)

=>-13x=-21

hay x=21/13

c: \(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\)

=>x-100=0

hay x=100

18 tháng 4 2017

a) ĐKXĐ: \(x\ne-1,x\ne0\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

<=> \(\dfrac{x\left(x+3\right)+\left(x-2\right)\left(x+1\right)-2x\left(x+1\right)}{x\left(x+1\right)}=0\)

<=> \(\dfrac{x^2+3x+x^2-x-2-2x^2-2x}{x\left(x+1\right)}=0\)

<=> \(\dfrac{-2}{x\left(x+1\right)}=0\) (vô lí)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne3,x\ne-2\)

ta có:\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)

<=> \(\dfrac{\left(x+2\right)\left(3-x\right)+x\left(x+2\right)-5x-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{x-x^2+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\)

<=> \(\dfrac{0}{\left(x+2\right)\left(3-x\right)}=0\) (luôn đúng)

Vậy pt trên luôn đúng với mọi x khác 3 và -2

18 tháng 4 2017

a) \(\dfrac{x+3}{x+1}\)+\(\dfrac{x-2}{x}\)=2

(đk: x\(\ne\); x\(\ne\)-1)

<=> \(x^2\)+3x + \(x^2\)-x -2 =\(2x^2\)+2x

<=> 2x -2 =2x

<=>0x=2

=>Pt vô nghiệm.

b) 1+ \(\dfrac{x}{3-x}\)= \(\dfrac{5x}{\left(x+2\right)\left(3-x\right)}\)+\(\dfrac{2}{x+2}\)

(đk:x\(\ne\)3; x\(\ne\)-2)

<=> 3x +6=3x+6

<=>0x=0

=> Pt vô số no.

c)\(\dfrac{3x+2}{3x-2}\)-\(\dfrac{6}{2+3x}\)=\(\dfrac{9x^2}{9x^2-4}\)

(đk: x\(\ne\)\(\pm\)\(\dfrac{2}{3}\))

<=>\((3x+2)^2\)-6(3x-2)=\(9x^2\)

<=>\(9x^2 \)+12x +4 -18x+12=\(9x^2\)

<=>16-6x=0

<=>6x=16

<=> x=\(\dfrac{8}{3}\)(t/m)

Vậy pt có no duy nhất là x=\(\dfrac{8}{3}\)

10 tháng 2 2018

d. ĐKXĐ: x khác 1, x khác 3

\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+1+8=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\) (loại)

Vậy pt vô nghiệm