Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a: 8x^3 -12x^2 + 6x + 1 =29
<=>8x^3 - 12x^2 + 6x - 28 =0
<=>(8x^3 - 16x^2)+(4x^2 - 8x)+(14x-28)=0
<=>8x^2 ( x-2) + 4x(x-2) + 14(x-2)=0
<=>(x-2)(8x^2 + 4x +14)=0
<=>8x^2 +4x +14 =0 <=> 8(x^2 +1/2 x +7/4)=0<=>(x^2 +2* x*1/4 + 1/16) +27/16 =0 <=>(x+ 1/4)^2=-27/16 (0xay ra) (loai)
=>(x-2)(8x^2 +4x+14)=0 <=> x-2=0 <=>x=2
Vay tap nghiem phuong trinh S={2}
\(b,\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)ĐKXĐ : \(x\ne2;\ne-3\)
\(\Leftrightarrow\frac{x^2-9}{\left(x-2\right)\left(x+3\right)}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow x^2-9=5\)
\(\Leftrightarrow x^2=14\)
\(x=\sqrt{14}\)
.....
a) \(\left(x+3\right)^2-\left(x-3\right)^2=6x\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=6x\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=6x\Leftrightarrow12x=6x\)\(\Leftrightarrow12x-6x=0\Leftrightarrow6x=0\Leftrightarrow x=0\)
Vậy phương trình có tập nghiệm S = { 0 }
b)\(-ĐKXĐ:\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x+3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-3\end{cases}}\)
- Ta có : \(\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\Leftrightarrow\frac{x-3}{x-2}-\frac{5}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-5}{\left(x-2\right)\left(x+3\right)}=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(thoaman\right)\\x=-3\left(kothoaman\right)\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 }
Ta có
\(-x^2+6x-8=-\left(x^2-6x+8\right)=-\left(x^2-2x-4x+8\right)=-\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=-\left(x-2\right)\left(x-4\right)\)
MTC:\(\left(x-2\right)\left(x-4\right)\)
\(\frac{\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\frac{-2}{\left(x-2\right)\left(x-4\right)}\)
\(\frac{x^2-x-4x+4+x^2+3x-2x-6}{\left(x-2\right)\left(x-4\right)}=-\frac{2}{\left(x-2\right)\left(x-4\right)}\)
\(\frac{2x^2-4x-2}{\left(x-2\right)\left(x-4\right)}=-\frac{2}{\left(x-2\right)\left(x-4\right)}\)
\(2x^2-4x-2+2=0\Rightarrow2x^2-4x=0\Rightarrow2x\left(x-4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\Rightarrow x=0\\x-4=0\Rightarrow x=4\end{cases}}\)
a) trước nha
T i c k cho mình nha bạn cảm ơn sẽ làm típ câu b)
b) x3 - 8 - (x - 2) (x + 2) = 0
=> x3 - (2)3 - x2 - 22 = 0
mk làm bậy thui!!! mới lên lớp 8 mà!! 6756886787696969768658585685685685858978467
\(a,\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\left(x\ne1;x\ne-2\right)\)
\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}+\frac{7}{x+2}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{x+2}{\left(x-1\right)\left(x+2\right)}+\frac{7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3-x-2+7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{6x-8}{\left(x-1\right)\left(x+2\right)}=0\)
=> 6x-8=0
<=> x=\(\frac{8}{6}=\frac{4}{3}\left(tmđk\right)\)
b) ĐKXĐ: x khác 2; x khác 4
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> \(\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> 2(x - 2) + (x - 1)(x - 4)(x - 2) = (x + 3)(x - 2)(x - 2)
<=> x^3 - 7x^2 + 16x - 12 = -x^3 + x^2 + 8x - 12
<=> x^2 - 7x^2 + 16x - 12 + x^3 - x^2 + 8x - 12 = 0
<=> 2x^3 - 8x^2 + 8x = 0
<=> 2x(x - 2)(x - 2) = 0
<=> 2x = 0 hoặc x - 2 = 0
<=> x = 0 (tmđk) hoặc x = 2 (ktmđk)
=> x = 2
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(-537x^2+5054x=-541x^2+5092x\)
\(-537x^2+5054x+541x^2-5092x=0\)
\(4x^2-38x=0\)
\(x\left(2x-19\right)=0\)
\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)
Lời giải:
a) $(x+3)^2-(x-3)^2=6x+18$
$\Leftrightarrow 12x=6x+18\Leftrightarrow 6x=18\Rightarrow x=3$
b) ĐK:$x\neq 2; x\neq 3$
PT $\Rightarrow x+3=\frac{5}{3-x}$
$\Rightarrow (x+3)(3-x)=5$
$\Rightarrow 9-x^2=5$
$\Rightarrow x^2=4\Rightarrow x=\pm 2$. Kết hợp với ĐKXĐ suy ra $x=-2$
c) ĐKXĐ: $x\neq \frac{\pm 3}{4}$
PT $\Leftrightarrow \frac{12x^2+30x-21}{(4x-3)(4x+3)}-\frac{(3x-7)(3x+4)}{(4x-3)(4x+3)}=\frac{(6x+5)(4x-3)}{(4x-3)(4x+3)}$
$\Rightarrow 12x^2+30x-21-(3x-7)(4x+3)=(6x+5)(4x-3)$
$\Leftrightarrow -24x^2+47x+15=0$
$\Rightarrow x=\frac{47\pm \sqrt{3649}}{48}$
d)
ĐK: $x\neq -1; x\neq 2$
PT $\Leftrightarrow \frac{4(x-2)}{(x+1)(x-2)}-\frac{2(x+1)}{(x-2)(x+1)}=\frac{x+3}{(x+1)(x-2)}$
$\Rightarrow 4(x-2)-2(x+1)=x+3$
$\Rightarrow x=13$ (t.m)