\((x^2-1)(x+2)(x-3)=(x-1)(x^2-4)(x+5)\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

\(a,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(7-5x\right)=0\)

\(\Leftrightarrow x-1=0;x+2=0\)hoặc \(7-5x=0\)

\(\Leftrightarrow x=1;x=-2\)hoặc \(x=\frac{7}{5}\)

KL....

\(b,\left(5x^2-2x+10\right)^2=\left(x^2+10x-8\right)^2\)

\(\Leftrightarrow\left(5x^2-2x+10\right)^2-\left(x^2+10x-8\right)^2=0\)

\(\Leftrightarrow\left(5x^2-2x+10-x^2-10x+8\right)\left(5x^2-2x+10+x^2+10x-8\right)=0\)

\(\Leftrightarrow\left(4x^2-12x+18\right)\left(6x^2+8x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+\frac{9}{2}\right)\left(6x^2+6x+2x+2\right)=0\)

\(\Leftrightarrow\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{9}{4}\right)\left(6x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\right]\left(3x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-1\end{cases}}\)Vì \(\left(x-\frac{3}{2}\right)^2+\frac{9}{4}>0\forall x\)

Vậy ..

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)