Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0
\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)
b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0
\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)
\(a,\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\-2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(b,\Leftrightarrow\left(x-2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a) \(2\left(x+3\right)-\left(x+3\right)\left(1+2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
-Vậy \(S=\left\{-3;\dfrac{1}{2}\right\}\)
b) \(x^2-4x+4=9\)
\(\Leftrightarrow\left(x-2\right)^2-9=0\)
\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
-Vậy \(S=\left\{5;-1\right\}\)
a.
\(\dfrac{x+1}{x-1}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
b.
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)}{x-9}< 0\Rightarrow\left[{}\begin{matrix}x< -2\\1< x< 9\end{matrix}\right.\)
a) (x - 7)(2x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy: S = {7; -4}
b) Tương tự câu a
c) (x - 1)(2x + 7)(x2 + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)
Mà: x2 + 2 > 0 với mọi x
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)
d) (2x - 1)(x + 8)(x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)
a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{7;-4\right\}\)
b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
a, \(-2x\ge-5\Leftrightarrow x\le\dfrac{5}{2}\)
b, TH1 : \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\Leftrightarrow x>1\)
TH2 : \(\left\{{}\begin{matrix}x-1< 0\\x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< -3\end{matrix}\right.\Leftrightarrow x< -3\)
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)
b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)
c, đk x khác - 2 ; 2
\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)
\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
\(a,\left|2x+2\right|+10=2x\)
*TH1 : \(\left|2x+2\right|=2x+2\Leftrightarrow2x+2>0\Leftrightarrow x>-1\)
\(\Rightarrow2x+2+10=2x\)
\(\Leftrightarrow2x-2x=-10-2\)
\(\Leftrightarrow0x=-12\left(vô\cdot lý\right)\)
*TH2 :\(\left|2x+2\right|=-2x-2\Leftrightarrow-2x-2< 0\Leftrightarrow x>-1\)
\(\Rightarrow-2x-2+10=2x\)
\(\Leftrightarrow-2x-2x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(nhận\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(b,\left|x-6\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=3-2x\\x-6=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;3\right\}\)
a) ( x + 1 )2 - 9 =0
<=>x2 +2.x+1 -9 = 0
<=>x2 +4.x-2.x - 8 =0
<=> x. ( x+4 ) - 2.(x+4 ) =0
<=>(x + 4 ) . ( x -2 ) =0
<=> \(\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Nghiệm cuối là { -4;2}
b) 2.x2 - 50.x = 0
<=>2.x . ( x - 25 ) =0
<=> x . ( x-25 = 0
<=> \(\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Nghiệm cuối là : { 0;25}